
An Exploration of Trustful, Secure Code Execution
and its Applications

Nick Dekker, Arnout van der Knaap, Joas Mulder, Sander Oostmeyer, Justin Segond

Abstract—With increasingly many devices in the world, access
to them is easier and more plentiful than ever before. This also
means that the number of applications and their complexity rises,
which brings an undesirable element along; malicious software.
To counteract such software, many companies have set out to
develop a solution, Trusted Execution Environments (TEE). In
this paper, we present a survey of these trusted execution environ-
ments. The purpose of this paper is to answer the question: How
can code be executed in a secure and trusted manner? By exploring
existing implementations and the vulnerabilities of TEEs, it is
clear that they could benefit from more development. In this
paper, security improvements and drawbacks of distributed in
comparison to TEEs are given. Future development of new sys-
tems based on blockchain technology is found to be a promising
alternative to trusted hardware execution. Blockchain technology
can provide similar guarantees about the trustful execution of
the code but it is currently not very scalable.

Index Terms—Computation, Trust, Security, Blockchain

I. INTRODUCTION

SOFTWARE has become fundamental to our daily lives
[1]. As the adoption of software solutions grows in more

and more fields, the probability that malicious or faulty code
execution could do harm, increases. This is especially true
as software solutions are being used in many industries with
safety-critical systems, such as medicine, aeronautics and nu-
clear energy [1]. With the increase in the use of software also
comes an increase in scale and complexity of this software.
Due to the complexity, code execution is an unpredictable
process and prone to a large range of faults. This, in turn,
increases the surface of possible malicious attacks. Which
emphasizes the need for secure and trusted code execution
environments.

The need for a secure and trusted code execution becomes
an increasing necessity when systems evolve from a cen-
tralized architecture to a decentralized one. In a centralized
system, the system has full control about what code is being
run. However, in a decentralized system this is not the case
as some of the code is being run on another node. If this
node is malicious it might not execute the code at all and
send the answer that the malicious actors want you to have.
There are multiple ways to prevent this kind of behavior, with
varying degrees of security, and trust guarantees. Bitcoin [2]
and Ethereum [3] have solved the problem of trusted code
execution trough global consensus, however, global consensus
is a technique that is notoriously slow and involves a lot
of network traffic [4]. The time it takes to make a decision
is increased to seconds per decision instead of milliseconds
and every decision has to be send to all nodes in the net-
work for them to agree or not. For instance, Bitcoin has a

theoretically upper bounded transaction throughput of only
seven transactions per second [5]. Despite such problems a
benefit of decentralized computation can be seen in BOINC
[6]. This is a platform were users can volunteer computer
resources like processing power to perform resource-intensive
scientific workloads. At the time of writing the network was
computing 28.232 PetaFLOPS (1015 Floating point operations
per second) on average over the last 24 hours. It is not
economically viable to achieve this kind of computing power
in a centralized fashion.

Secure and trusted execution environments are becom-
ing more important in both centralized and decentralized
computing. The existing corpus of literature on secure and
trusted code execution environments report on their individual
techniques and weaknesses [7]–[15]. However, a survey of
current trustful and secure code execution techniques, and the
application of such techniques is missing. Our study aims to
fill this gap in literature, by means of a literature study.

As the goal of the survey is to provide an overview of
the available secure and trusted execution environments, we
formulate the following research question:
How can code be executed in a secure and trusted manner?
To answer this question we break up this main question into
three sub-questions:

1) How can code be trustfully and securely executed?
(section III, IV).

2) Which trusted execution platforms have been imple-
mented, and what are their problems? (section V).

3) What are the applications of Trusted execution environ-
ments? (section VI).

After answering all the sub questions we will formulate
an answer to the main research question in the conclusion
(section VII). But before discussing the sub questions, we
emphasize on the difference between securely executing code
and trustfully executing code. Security is the state of being
free from danger or threat [16]. In terms of code execution
this means that a device and files are free from danger of
unjust alteration with malicious intent. Trustfully executing
code is in many ways almost the same but the point of view
is slightly different. Trustfully executing code is about the user
sending the code to be run somewhere, whether this is on the
same device or somewhere else as in distributed computing,
having to trust the code is run correctly and without the device
executing the code listening in. A common way to achieve trust
is dedicated hardware to run the code on. What constitutes as a
trusted execution for the purpose of this paper will be defined
in the next section.



AN EXPLORATION OF TRUSTFUL, SECURE CODE EXECUTION AND ITS APPLICATIONS 2

II. TRUSTED EXECUTION

In this paper, the trustful execution of code is discussed.
To achieve trustful execution of code, the environment where
the code is executed must be protected against interference
from outside sources. What constitutes as protected and thus
a Trusted Execution Environment (TEE) is not agreed upon
in literature or commerce. Therefore, it is useful to state our
definition of some of the terms involved in trusted execution.

A. Trusted Applications

Section V-B will present existing hardware implementa-
tions, as well as the environments in which they could be
executed. These environments and hardware solutions are
capable of running applications. At times, these applications
are ’regular’ ones, without specially designed code. Other
times, code has been created with the TEE in mind. These
programs are capable of communicating with trusted parts of
the hardware. According to Dettenborn, a trusted application
is: An application encapsulating the security-critical function-
ality to be run within the TEE [17].

B. Trusted Environments Standardization

Trusted Execution Environment, or TEE for short, is a term
that is used often both in literature and by chip vendors. Even
though the term is used often, there is no standard definition
for TEE. Instead, there are multiple definitions developed by
different manufactures and researchers. For a more in depth
view of what exactly the differences in opinions and statements
about TEE are, we refer the reader to the work of Sabt
et al. [18]. For the purposes of this article it is sufficient
to say that most definitions agree on isolated execution but
secure storage can be involved in varying degrees [18], even
though GlobalPlatform has the most clear specifications. Thus
in this article isolated execution and secure storage are used
as the classification of TEE. This allows for the comparison
of implementations with different standards in the paper.

III. ISSUES IN SECURELY EXECUTING CODE

Security and trust are major problems in computer software.
Ensuring that a system (and network) is secure and trusted is
a difficult task. There are a lot of different ways a system
can have its security compromised. With software being more
widely used than ever, several problems have risen in the field
of security and trust. In this section we will define the levels
at which a system should be secure and the issues that have
arisen. These issues have to be solved in order to securely
execute code.

A. Machine Security

Executing malicious or bugged code can lead to problems on
the machine that is executing this code. Machines may contain
private or sensitive data. In case the machine is compromised,
this data may be stolen. When executing code on a machine,
the following should be expected [18]:

1) Authenticity: The machine should only grant access to
important actions when given the correct rights. When the
authenticity is not handled correctly, it can lead to compromi-
sation of the system.

2) Integrity: Machine should not have been tampered with
and execute code correctly. In the case code is altered,
unexpected events may occur, leading to system errors and
potentially harmful situations.

3) Confidentiality: Code and data should not have been
observable by unauthorized applications, or even the main
OS of the system. When the confidentiality is not handled
correctly, private data or code may be leaked.

B. Issues

Next, the issues that arise when trying to securely and
trustfully execute code will be discussed, and how these issues
relate to machine security.

1) Physical issues: In society, security is usually associated
with physically securing an object. In the world of secure and
trusted computing, physical security is also a problem [19]. A
person who has physical access to a machine might be able to
steal the data (confidentiality), or take control of the machine
by changing the code (authenticity and integrity). This is not a
big problem when the machine has no private or sensitive data.
When for instance a person has physical access to a central
server that stores a lot of users private data, physical access
becomes a much bigger problem. The person accessing the
machine can possibly steal the data.

2) Secure Code Execution: The next issue is securely
executing code. When executing untrusted code, ensuring that
this code can be executed securely and without compromising
the machine can be a difficult task. Malicious or bugged code
can compromise a machine if not handled correctly. In case of
compromise the data on the machine could be stolen, which
harms the confidentiality. The machine could also crash. This
can lead to loss of data, which harms the integrity of the
machine.

3) Trusted Code Execution: Trusted code execution can
also be an issue. When code is sent to another machine in a
network to be executed, how is it possible to ensure that this
code is executed correctly. Ensuring that these machines give
the correct result can be a difficult task. Nodes with malicious
intent can give fake results, and therefore subvert the network.

4) Code Secrecy Issues: The last issue is code secrecy
issues. In cloud computing for instance, a client can send
code to a cloud computing provider to be executed. When
this code is confidential, the client has to trust the cloud
computing provider and the employees who have access to
the machine to not steal it. Stolen code can be disastrous for
the companies that have spent a lot of money developing the
code. Because the code is stolen from the machine, this is bad
for the confidentiality of the machine.

C. Summary

To summarize, when trying to execute code in a secure
and trustful manner there are multiple issues that need to be
addressed. Issues not only arise at the machine level, but also



AN EXPLORATION OF TRUSTFUL, SECURE CODE EXECUTION AND ITS APPLICATIONS 3

Fig. 1: Total size of the public cloud computing market from
2008 to 2020 (in billion U.S. dollars), image copied from [22]

at the network level. Executing code in a secure and trustful
manner involves protecting both the code being run on the
machine and protecting the machine from the code being run.
The code and its states should not be visible to the machine
before, during or after the run, and on top of that, should
be safe form someone with physical access to the machine.
However, there are techniques available that solve some of
the issues addressed. Trusted execution environments are one
of the main ways to solve many of these problems. They do
this by enforcing trust.

IV. TRUST IN REMOTE CODE EXECUTION

Trust in remote code execution is becoming increasingly
important as computations are outsourced more frequently
[20]. An environment which stimulates this development is
cloud computing. By first taking a closer look into this
technology the increasing relevance of trust in remote code
execution is clarified. Furthermore, a definition of what trust
is, and how it can be enforced will be given.

A. Cloud Computing

Cloud computing has seen steady growth and adoption
in the last ten years, and is projected to keep doing so,
see Figure 1. There has been a shift in the way businesses
around the world deploy their applications. No longer do
these companies require large capital outlays in hardware to
deploy their service, or the human expense to operate it [21].
Cloud computing has commoditized computing power, further
leveling the playing field between small start-ups and big
corporate firms.

Consequently, this rise of cloud computing has led us to
an age in which most of our computations and data are
handled by a few big cloud computing providers: Amazon,
Microsoft and Google. While this does provide businesses
with strong economies of scale, it does pose some risks. By
centralizing the world’s most used services and apps, you are
effectively creating a ”honeypot” for hackers and other actors

with malicious intent [23]. This has resulted in an increasing
demand of trust with regards to the use of cloud computing
services. The issues and challenges surrounding this have
been widely discussed. [23]–[27] In the following sections,
a definition of this trust will be given and the ways in which
trust is currently enforced and managed.

B. Defining Trust

Cloud computing has commoditized the ability to perform
computations externally, removing the need for costly hard-
ware and the corresponding maintenance. However, by using
this service, it should provide trust that the execution of the
code runs smoothly and gives us the right result. What does
this notion of trust mean when it comes to the valid execution
of code? For this, we have to take a step back. When running
a piece of code, what should be expected from it? A list of
requirements was given in section III, for a more in depth
explanation of these requirements, we refer the reader to the
work of Sabt et al. [18]. When a certain system adheres to
these requirements, the respective system can confidently be
called trustworthy for executing code.

Currently, several systems exist who enforce these re-
quirements by utilizing several techniques and methods. The
following section will examine these techniques and their
corresponding efficacy in real world scenarios.

C. Enforcing Trust

As previously discussed, the advent of the internet and
cloud computing capabilities, have significantly increased the
applicability of executing code remotely. From a security
standpoint, this brings several issues. Often, there is not much
known about the machine that is running the code, and thus
risk the possibility that this machine is malignant, preventing
code from being run correctly. This has increased the demand
for methods to enforce trust in these situations by leveraging
hardware and software solutions. In this section, it will be
explored how trust could be enforced.

1) Virtualized Environments: A key mechanism that is
utilized in cloud computing infrastructure is virtualization.
Virtualization is defined as the creation of a virtual entity of
something, which is usually a virtual instance of an operating
system. In cloud computing this can be software, middleware
or hardware [28]. Security in cloud computing settings comes
down to two objectives: isolating user’s workloads so that they
cannot affect each other, and making sure the workload of each
individual user is secure and authentic. Both objectives relate
to our goal of trusted code execution, as is discussed in section
II.

Research on cloud security found that existing virtualization
methods operate under two assumptions which make these
methods unfeasible for securing code execution in a cloud
setting [28]. First, the assumption is made that the VMM
(Virtual Machine Monitor) has knowledge of the sofware being
virtualized, allowing it to do integrity checks and enforce its
security this way. Secondly, these methods assume that the
Virtual Machine can be monitored from the moment it boots.



AN EXPLORATION OF TRUSTFUL, SECURE CODE EXECUTION AND ITS APPLICATIONS 4

This is often not the case in a cloud setting, as guests can
easily start up a snapshot, which may be compromised [28].

This means that trusted code execution in a cloud setting
can not be achieved by virtualization alone. To this end, a
secure version of virtual-machine introspection can be used.
This introspection makes no assumptions on the running state
of the guest VM and its integrity. The only assumption made
is on the hardware, it is presumed an attacker is not able to re-
program the CPU. This introspection method further assumes
that the hypervisor and security VM are trusted, which allows
for the establishment of a dynamic root of integrity. From
this root the method is then able to dynamically determine
the integrity of all critical components in the VM [28]. This
approach was found to have perfect accuracy in detecting
malicious behaviour, while only introducing a 2% overhead
in macrobenchmarks.

2) Dynamic Root of Trust Measurement: Building a level
of trust when working with unknown systems can be done by
utilizing so called roots of trust. These roots of trust are part
of the Trusted Computer Base (TCB) of a computer system.
The trusted Computer Systems Evaluation Criteria (TCSEC)
define the TCB of a computer system as the part of the system
(hardware, firmware, software and /or other) that is critical to
its security and whose failure (due to bugs or vulnerabilities
or any other reason) may lead to compromise of the system
[29].

A piece of hardware, called the Trusted Platform Module
(TPM), which is attached to the motherboard, is used in many
computer systems as a root of trust. It is intended to provide
three roots of trust i.e. a) Root of Trust for Measurement
(RTM), b) Root of Trust for Storage (RTS), and c) Root
of Trust for Reporting (RTR) [30]. RTM is defined as an
implementation of a hash algorithm which can put the system
in a trusted state. Static RTM (SRTM) is used to maintain
a chain of trust for the entire boot chain, which can be very
long. Elements in the chain are also subject to change, making
it even more challenging. To this end Dynamic RTM (DRTM)
was introduced. The DRTM allows the launch of the measured
environment at any time without a platform reset, which would
normally be necessary to establish a base of trust [30]. DRTM
is used in multiple implementations to facilitate trusted code
execution [31]–[34].

3) Remote attestation: Very much related to DRTM is re-
mote attestation. Remote attestation methods define a protocol
or line of communication between an authority and a remote
machine. The goal of such a protocol is to be able to attest the
remote machine for authenticity. The implementations using
DRTM are basically remote attestation methods, as the TPM
is used to attest the authenticity of the system.

Coker et al. suggests five principles are crucial for attes-
tation architectures [35]. Ideally, these architectures would
adhere to all of these principles. But in reality this is often
not the case. The following constraints are imposed by these
principles, and are thus important in designing effective attes-
tation architectures:

1) Measuring diverse aspects of the target of attestation.
2) Separating domains to ensure measurement tools can

prepare their results without interference.

3) The ability to protect itself, at least at a core trust base
that can set up this domain separation mechanism.

4) Delegating attestations and sending them to selected
peers, allowing the target to select what facts get shared.

5) Managing attestation so that the target is able to enforce
certain policies.

Multiple implementations of attestation architectures exist.
All of which adhere to at least some of the constraints
mentioned above. Most of these involve the need of a hardware
component like the TPM to act as the core trust base [36].
Attempts to remove this need for a hardware trust base have
been made [37], but have been found to ultimately still require
an immense degree of knowledge on the underlying hardware
[35].

Lastly, recent advancements in processors have opened the
door to some vulnerabilities to existing attestation methods.
Modern machines that have multiple processors, introduce
virtualization extensions, have a greater variety of side effects,
and suffer from nondeterminism [38]. This means modifica-
tions to existing attestation methods need to be made in order
to be able continue relying on them.

4) Trusted Code Execution on Untrusted Hardware: All
of the techniques for trusted code execution above, operate
under the assumption that the hardware of the target system
can be trusted (i.e the hardware is not tampered with). When
executing code on a remote machine over which we have no
physical control, we can not guarantee this machine is using
safe hardware. As a result, methods are required which are
both resilient to malicious software and hardware.

To this end, a Verifiable Computation scheme utilizing Yao’s
Garbled Circuits with a fully-homomorphic encryption scheme
can be used [39]. The efficiency of this protocol is proved to be
O(n+m). Besides that, the scheme also provides full privacy
of the client’s inputs and outputs.

5) Blockchains: Recently, blockchain technology and the
wide ranges of its possible applications have been widely
discussed [40]. Proponents of this new technology have been
talking about the potential transformative power of distributed
ledger technologies for some time. While this technology may
provide some beneficial and useful properties [41], its potential
in disrupting several market sectors is likely overestimated
[42].

However, some of these properties do give us useful prim-
itives to design systems in which code can be executed
trustfully, namely:

1) Public Verifiability: Allows anyone to verify the correct-
ness of the state the system is in.

2) Integrity: Ensures that information is protected from
unauthorized modifications, i.e. that retrieved data is
correct.

3) Transparency: Related to public verifiability, trans-
parency allows all participants in the network to verify
the state of the network effectively.

There are several implementations using blockchain tech-
nology, that allow the secure execution of code, one of which
is Ethereum [43]. Permissionless blockchain implementations
(i.e blockchains in which any user can take part), need some



AN EXPLORATION OF TRUSTFUL, SECURE CODE EXECUTION AND ITS APPLICATIONS 5

Fig. 2: A comparison of popular blockchain consensus mech-
anisms, image copied from [45]

form of a consensus protocol to enforce trust. Ethereum, as of
right now, uses a consensus protocol called ”Proof of Work”.
This protocol relies on a network of ”miners” to ensure the
validity of the network. These miners are ultimately the remote
machines responsible for executing the code of the users. Proof
of work was initially invented by Bitcoin [2], and is proven
to be quite resilient to various kinds of attacks [44]. Lastly,
networks like Ethereum allow anyone to start mining, which
means blockchain implementations like Ethereum provide
trusted code execution under no assumptions on the hardware
or software of these miners.

Other forms of consensus protocols exist as well, each
having their own benefits and drawbacks. A list of these
protocols is given below [45], as well as a comparative table
(Figure 2).

1) Proof of Stake (PoS): PoS completely replaces the min-
ing operation with an alternative approach involving
a users stake or ownership of virtual currency in the
blockchain system. Instead of needing to buy hardware
to participate in these kind of blockchain systems, one
would need to buy the underlying cryptocurrency to
increase their odds of becoming a validator.

2) Proof of Elapsed Time (PoET): PoET utilizes a TEE,
powered by Intel SGX [46] to create new blocks in
a trustless manner. SGX is discussed in more detail
in section V V-B. Each round a random validator is
selected using a lottery based election model. Using
a TEE guarantees the safety and randomness of this
process.

3) Practical Byzantine Fault Tolerance (PBFT): PBFT is a
state machine replication algorithm that tolerates Byzan-
tine faults provided fewer than a third of the replicas
are faulty. BFT provides linearizability, which is a
strong safety property, without relying on any synchrony
assumption [47].

4) Federated Byzantine Agreement: Consensus models that

are a derived form of Byzantine Fault tolerance al-
gorithms modified to include open-ended participation
from users [45].

D. Summary

To summarize, many methods exist to enforce trusted execu-
tion of code. This enforcement often relies on the assumption
that the hardware in a system can be trusted and used as a
root of trust. In decentralized systems, this is not necessary,
at the cost of additional overhead and redundancy. This leads
to a system with lower efficiency when executing code. To
trustfully and securely execute code, the environment in which
the code is executed needs to be controlled. This controlled
environment can be achieved by using special hardware as
a base of trust. Another way controlling can be done is
with overhead in a decentralized system. An overview of the
specific implementations of trusted environments and there
problems will be provided in the next section.

V. TEE IMPLEMENTATIONS AND PROBLEMS

In this section, implementations of systems that enforce
trust will be discussed. As explained in Section II, there are
different ideas of what exactly trust entails. In this section, a
list of hardware solutions and software environments will be
provided that enforce some form of trust. There is no perfect
solution for trusted execution yet, trade-offs exist for each
implementation. To understand what trade-offs are made, we
give an overview of trusted code execution and their problems.

A. Overview of Types

There are several ways to implement trusted code execution.
Before diving into these, it is important to go into a little more
detail about Trusted Execution. As explored in section III,
the term trusted code execution can be interpreted in multiple
ways [18], [48]. First, when looking from a confidentiality
perspective, one might argue that the code - and its data set -
being run should be readable only by those with the correct
privileges. However, if the code is open-sourced, integrity is
the main focus, with correct code execution being paramount.
Lastly, authenticity is an important aspect as well, promising
of the safety of a users system. These three points warrant
different measures.

First, we will touch on confidentiality. Often used for main-
taining confidentiality is a hardware solution, where a CPU
is protected by hardware encryption. These CPUs often have
a separate partition on which the ’trusted code’ is executed.
Most of the time these partitions serve a specific purpose
concerning sensitive data. An example of this can be found in
banking applications [49]. Next, integrity, which is a way of
making sure code is executed properly is by executing code on
multiple machines. Either by re-running the same operations
multiple times (and open-sourced), or running parts of the
code on different machines. The latter of which may protect
the data if code is confidential, more on that later (V-B).
Additionally, code can be self-verifying [7], meaning, the code
is protected against modification. Such code might be asserted



AN EXPLORATION OF TRUSTFUL, SECURE CODE EXECUTION AND ITS APPLICATIONS 6

or validated in several ways. A well-known type of self-
verifying code is (cryptographic) checksumming. Another way
of code validation is watermarking, this allows the computing
device to check for the presence of the intact watermark
[7]. As described in [7], these methods are not sufficient,
as they are solely protected by software. In [50] is proposed
that hardware is necessary to stop software duplication (and
therefore modification). Lastly, authenticity means the user is
who they say they are. No one should be able to access parts
they are not authorized to. In TEEs, this problem is solved by
not giving access to the secure area. Instead, data or actions
are requested and the secure environment either allows or
disallows the request.

B. Overview of Existing Implementations

As mentioned before, there are hardware solutions prevent-
ing code execution from failure or interception. Since 1997 [9]
there have been designs and ideas about trusted environments.
In this section, we take a look at some implementations and
identify any problems and shortcomings they posses.
Intel SGX - First off, Intel SGX (Software Guard Extension)
is a prominent contender in the trusted computing space at
this time. The processor is separated into several sections,
the main OS runs on one part, while trusted applications
run on the TEE. Segments inside that TEE running code are
called enclaves. Despite its careful design there are doubts
about its security [10]. So-called side-channel attacks can
still exploit vulnerabilities [46]. Using these attacks, sensitive
data is still subject to interception. According to [46], these
attack threats are eliminated by disabling hyper-threading.
Despite this vulnerability, SGX is safer than regular chips.
A security effectiveness analysis of SGX [11] shows that the
code inside SGX enclaves can be identified. Schwarz [51]
has recently experimented with running malicious code from
inside SGX. This experiment resulted with the malicious code
in full control of the secure enclave as it could substitute the
encapsulating software without being detected. Therefore it is
not believed that SGX has reached maturity to the point of
adoption and trust:

We conclude that instead of protecting users from
harm, SGX currently poses a security threat, fa-
cilitating so-called super-malware with ready-to-hit
exploits.

ARM TrustZone - Mobile devices could also profit from ad-
ditional security. ARM TrustZone [12] provides such function-
ality for mobile devices. Like Intel SGX, TrustZone isolates
two segments in memory where code is executed. Though,
unlike SGX, TrustZone runs a fully isolated OS. By running
a ”secure world” on top of a secondary OS (Figure 3) the
trusted applications are isolated from regular applications.

TrustZone does however have some vulnerabilities inhibit-
ing its efficacy in being a TEE [52]. A vulnerability exists in
the monitor, whose exploitation allows the execution of code in
the most privileged exception level of the CPU. Qualcomm’s
TrustZone implementation further allows the operating system
to load in binaries to expand the functionality of the execution
environment. These binaries, called trustlets, allow an attacker

to execute an arbitrary piece of code in the Secure World, see
Figure 3.

Fig. 3: The compartmentalization of ARM TrustZone, image
copied from [53]

AMD SEV - AMD SEV is another solution that focuses
heavily on trusted code execution. In contrast to Intel SGX
and ARM TrustZone, this processor aims to isolate sections
on a virtual machine specifically. With this separation, entirely
secure key generating is made possible. Since a key is used to
encrypt system memory, created at boot, AMD SEV is usable
with any operating system [13].

Mobile processor manufacturers also have shown interest
in offering (hardware) security. This mostly means sealing
off storage using encryption. Sensitive activities, like banking
would also become more secure.

Unfortunately, a vulnerability was found that is able to
reliably and efficiently extract all memory contents from SEV-
encrypted virtual machines in plain text [14]. Morbitzer et al.
state that their implementation, called SEVered, is based on
the observation that the page-wise encryption of main memory
lacks integrity protection. They propose that the best solution
would be to provide a full-featured integrity and freshness
protection of guest-pages additional to the encryption, as
realized in Intel SGX.

Another study done by Mofrad et al. [54] states the same
vulnerabilities in relation to memory integrity protection. Fur-
thermore, they state SEV is vulnerable to DOS attacks and
memory side-channel attacks. According to Mofrad et al. SEV
provides weaker security protections than Intel SGX.
Keystone - Although Keystone [55] is currently unfinished, it
is still worth mentioning here as this is the only fully open-
source project to build a trustworthy secure hardware enclave.
All other trusted hardware solutions rely partially on security
by obscurity as parts of the hardware-stack implementation are
not made public. This project aims to change that and pursues
open security.
Sanctum - An open source design of a secure processor [10].
It consists of a small hardware change to processors and
security monitor software. Sanctum aims to protect running



AN EXPLORATION OF TRUSTFUL, SECURE CODE EXECUTION AND ITS APPLICATIONS 7

software against a range of software attacks. It offers the
same software security promises as Intel SGX, with the
added security of preventing software side channel attacks.
At the hardware level, the system’s memory is divided into
regions, which use disjoint cache sets [56]. Each of these
regions can only be allocated to one enclave. There is no
leakage of private memory access patterns through the cache,
because the processor’s memory is divided into these regions.
Unfortunately, Sanctum offers no protection against hardware
based attacks.
Aegis - Aegis [15] was one of the first implementations of
hardware trusted execution environments when it was released
in 2003. The architecture provides protection against physical
attacks and several software attacks. Aegis provides two se-
curity levels for the applications. The first level protects the
integrity of the executing software. The second level protects
the confidentiality and the authenticity as well. Aegis does not
offer protection against software side channel attacks [57].
There is also no support for vitalization, which is key in
the more recent implementations of trusted execution envi-
ronments.
Secure Element - Besides fully integrated trusted hardware
elements, there are Secure Elements (SE). They are separate,
small chips, used in NFC cards to provide secure data ex-
change. The chip was heavily used in GSM phones, prior
to smartphones. Nowadays, these chips are still in use to
verify transactions [58], providing security tokens to ensure
authenticity.

All of the implementations mentioned above are usable
to achieve trusted computing. They are used in systems to
create environments that allow users to shield themselves from
attacks.

C. Environments Enforcing Trusted Computing
New software methods have been developed for trusted

computing. Some of these are an Operating System (OS) that
run on the hardware discussed in V-B. Other environments
are software systems that are created to ensure secure code
execution. The degree of trust enforced differs between dif-
ferent solutions. Discussed are some of the solutions currently
available.
Andix OS - Devised as a result of the notion of malicious
applications running in the same memory space as programs
utilizing sensitive information [59]. The OS calls itself ARM
TrustZone aware, supporting this secure hardware and using it
to create and run trusted applications. Andix targets developers
that desire to create trusted applications. Andix OS provides
guarantees about trust separating trusted and untrusted appli-
cations and not letting them access the same memory. If an
untrusted program tries to access memory that is trusted the
program will be stopped from doing so by this OS.
Genode TEE - Like Andix, Genode makes use of ARM
TrustZone. Genode runs in the secure world of ARM TZ, while
another (Linux) OS runs in the normal world. Genode allows
the GPU to be used, while still showing that code execution,
visible on screen is taking place in the normal world.
BOINC - BOINC is a software system designed for public
resource computing [6]. In other words, a system where cal-

culations can be executed on certain problems in the BOINC
network by participants. As explained in [6], BOINC works
with a master URL, which is at the same time the home
page of the website. Members can participate by registering
projects to this homepage. However public resource computing
is faced with the problem that calculation can be wrong,
possible reasons for this could be malfunctioning computers
or mischievous members. The way BOINC enforces trusted
result is by implementing redundant computing. Redundant
computing is a system where each project can choose a number
of replications. If the results to a computation are identical for
all replicas, a consensus is reached about the answer of the
equation. If no consensus is a found a new result set is created
and the process repeats itself.
Blockchain - Blockchain technology is a potential TEE as
well. It allows programs to run on its decentralized nodes.
These programs are called Smart Contracts [60]. While they
are bounded in computation time, they offer an interesting use.
Due to programs being uploaded and run in a decentralized
environment, its validity is verified without the need for
trusted hardware, making it an excellent candidate for trusted
computing.

We will look at Ethereum and its Virtual Machine (EVM)
[43] as a potential TEE. While the EVM is not defined as
a TEE, we research the possibility of executing code on a
decentralized environment and its effect on the degree of
trust. When a program is uploaded to a public chain, such
as the EVM, its legitimacy can be verified by anyone. The
advantages, disadvantages and possibilities of uses and some
implementations of TEEs are discussed in VI.

Some blockchains allow for secure implementations on their
programmable environment. Trustee [61] is a Vickrey auction
implementation (sealed bid auction where the highest bidder
wins, but pays the amount of the second highest bidder)
which preserves privacy. Trustee runs on Ethereum, using Intel
SGX. Secure computations are executed to ensure tamper-free
results. Trustee is an example of a system based on blockchain
that also has confidentiality as a property, but does this by
making use of secure hardware.

D. Confidentiality in Trusted Environments

Confidentiality can be achieved using secure hardware, but
there are also other methods that can be used. Using some
of these methods in combination with a distributed system
like EVM can allow for confidential computations that are
both verifiable on the blockchain and confidential. Listed are
techniques that enforce confidentiality that see use and are
relevant in current technology.

1) Homomorphic encryption: a method of processing data
while the data is encrypted. The idea of homomorphic
encryption is that encrypted functions executed on en-
crypted data will result in the same as a function on the
plaintext data.

2) secure Multi-Party Computation (sMPC): the act of
executing code on multiple machines, breaking up the
data sets (and functions) in such a way the nodes are
not aware of what they are computing.



AN EXPLORATION OF TRUSTFUL, SECURE CODE EXECUTION AND ITS APPLICATIONS 8

implementation specifications hardware attack protection side-channel attack protec-
tion

attack surface

Intel SGX Proprietary yes yes* Small
ARM TrustZone Global Platform yes yes Medium
AMD SEV SEV ES yes yes* Medium
Sanctum N/A no yes Small
Aegis N/A yes no Large

∗ has vulnerabilities

TABLE I: A comparison of hardware implementations [14], [51], [52], [56], [57], [62]–[64]

3) zero knowledge proof (ZKP): using this technique, a
node is able to prove to another node it knows a fact or
value, without revealing said value.

Using one, or multiple of these methods, obfuscation of the
code is applied. Although these techniques might be effective,
they are not optimal as overhead is carried along, albeit small
overhead with homomorphic encryption [65]. An example of
a system that uses some of these techniques is Enigma [66].
Enigma is based on a blockchain, moreover, it uses sMPC
for its computations and ZKP to verify computation results.
This allows for confidential code execution without trusted
hardware.

Another way that privacy can be achieved on a blockchain
is trough anonymity [67]. This anonymity might be hard to
achieve for some users as analysis of the transactions could
still potentially link a user to their node on the chain.

E. Summary

To answer the question:“Which trusted execution platforms
have been implemented, and what are their problems?” the
following topics were discussed. First, an overview of the
types of issues in trust and a practical example for each was
given. Then an overview of the existing hardware implemen-
tations was provided. Table I gives a high level overview of
the hardware TEE implementations that have been discussed
in this section. It should be noted that the attacks service
metric, where small, medium and large is used, was chosen
based on the attack surface relative to each other. Small
means the attack surface is nearly optimal. There are almost
no vulnerability points to exploit. Medium implies a greater
amount of points were found. Then there is large, where
the problem is more severe and many points are exposed
for exploitation. Following the hardware implementation, the
environments were discussed that provide trusted execution.
Some of these environments rely on trusted hardware like
SGX but some of these do not. Finally, ways to enforce
confidentiality in distributed systems were discussed. All of
the hardware implementations and environments have some
vulnerability. Depending on the use case, different systems
are appropriate.

VI. APPLICATIONS OF TEES

The fact that there are so many TEEs is no mere co-
incidence. Many areas of computing require security and
trust. This section lays out some important uses of the TEE
solutions, although we do not stop there. We explore the
possibilities of running code in a trusted manner on decen-
tralized systems. We briefly explain the idea of decentralized

computing, before presenting an overview of advantages and
disadvantages of applications of trusted computing.

A. Decentralized Computing

In the last decade decentralized computing has become
drastically more popular [68]. The introduction of blockchain
technology has played a big part in this development, as it
has proven to be more useful in certain applications than
“traditional” centralized computing.

In order to provide a better view of decentralized computing,
it should first be explained how centralized computing works.
In simple terms, centralized computing is a type of architecture
where there is one central server that may be connected with
one or several clients. This central server is the most important
part in centralized computing as it runs the main application
and is responsible for the communication between clients who
may be connected to the network. For these reasons the main
server usually has huge computing power and high data storage
at its disposal so it can successfully do its job.

However, as Gray [69] states in his paper, in decentralized
computing, there is no central server which runs the main
application, but rather the network of clients that runs the
applications. The clients are responsible for the calculations,
data storage and communication. The way these clients com-
municate with each other is by a message protocol, where
each client can send a message to any client in the network.
However, as a consequence, a decentralized architecture does
raise some problems. In a decentralized system there is no
true global consensus on the state of the network. messaging
efficiency is also something these systems struggle with, as
all clients have to communicate with each other to make
decisions. Potential advantages, however, are the amount of
processing power available in large decentralized systems and
the added privacy as not all data is collected in one place.

B. Real-world Uses of TEEs

Banking - One use for trusted execution environments is
banking [70]. If a banking application is not secure or running
on untrusted hardware there is a potential security breach
and great sums of money might be lost or private exchanges
exposed.
Cryptocurrency - Much related to banking are cryptocurren-
cies like Bitcoin. Bitcoin, and other cryptocurrencies, have
to be sure which transactions on its network are authentic.
In contrast to traditional, centralized banking systems, cryp-
tocurrencies are platforms which do not use trusted hardware
and cannot rely on it. There is a different level of trust;
transactions are public and verified by arbitrary nodes [2].



AN EXPLORATION OF TRUSTFUL, SECURE CODE EXECUTION AND ITS APPLICATIONS 9

Instead of having to trust a centralized server, the actions
done by an individual are trusted, but that may be unjustified.
This problem of trust by using a public ledger. All nodes in
the network can exchange currency with each other. As only
verified transactions make it into blocks on the chain, the
only way to steal from someone is by having more than 50%
computing power of the network, which is difficult to achieve
[71]. Furthermore, such actions are likely to be detected within
minutes if not seconds as it requires large changes to the
chain [72]. Which will then lead to the value of the coin
dropping, as the trust in the coin drops, making the theft of the
currency not economically viable. This still leaves the problem
of trustfully exchanging different cryptocurrencies however.
Exchanging cryptocurrencies relies either on a trusted third
party or on trusting the other person. Trusting the other person
leaves the obvious security deficit of one party sending the
value to be exchanged first, at which point the other party
could leave. A solution for these kinds of situations is provided
by Tesseract. Tesseract is real-time cryptocurrency exchange
based on trusted hardware [73]. This system relies on Intel
SGX enabled servers to create an atomic exchanges between
cryptocurrencies possible.
Smart Cards - Secure Element (V-B) chips are often used
in cards for authentication and transaction verifications, also
known as Smart Cards. They are used in many areas, where
wireless transactions are useful [74]–[77]. Some alternatives
are suggested in [78], Universal Integrated Circuit Card
(UICC) being the most proficient one.
Learning - Another application of secure hardware solutions
is in the training of an self-learning algorithm on classified
data. If multiple companies want to train an algorithm on
a combination of their respective data, while not wanting to
share this data with each other, a trusted hardware solution for
the training could provide an answer. The trusted hardware just
takes inputs from multiple sources and trains the algorithm.
The data is never shared with the other party and thus remains
confidential.
Biometrics - Recent technological advancements in smart-
phone technology have allowed for the use of biometrics
for fast identification/authentication [79]. In technical terms,
biometrics is the automated technique of measuring a physical
characteristic or personal trait of an individual and comparing
that characteristic or trait to a database for purposes of recog-
nizing that individual [80]. These traits and characteristics are
very personal. Thus, several privacy concerns have been raised
[81]. TEEs could be utilized to ensure these privacy concerns
are never violated. For example, one of the concerns involves
the biometric information being ”captured” in the primary
market. When this has occurred, the information can easily
be replicated, copied, and otherwise shared among countless
public- and private-sector databases [82]. TEEs offer us a
solution in which we can ensure that this biometric information
is not captured by any external actors.

C. Trusted Code on Distributed Systems

Systems have been implemented that offer a trusted en-
vironment without using trusted hardware. An interesting

implementation for distributed computing is Enigma. Enigma
is a platform that provides trustful execution of code using a
blockchain as a base and a shared hashtable for data sharing
[66]. Enigma is faster than other blockchain solutions because
not every node checks the result of computations. Instead, a
zero knowledge proof is used to prove computations are run.
This means that the scaling factor, that is such an issue for
most blockchains, is less of a factor. Enigma also uses sMPC to
improve the privacy of the code execution. Thus, although no
trusted hardware is used, it still provides a trusted environment
for code execution. As can be seen in an implementation
such as Enigma, smart contracts, running on a blockchain, are
usable as a TEE. It solves the issue of trust intrinsically with
its consensus protocol. All the while, isolation of sensitive
information is preserved using obfuscation and encryption.
We make a case for these distributed systems replacing,
or at least providing an alternative for hardware TEEs. As
shown, distributed computing can be used to create a TEE
on on trusted hardware, there is one major downside. They
have significant overhead as computations need to be verified
multiple times to create the required trust. TEEs based on
hardware implementations do not have this overhead but they
also have vulnerabilities as is shown in Table I.

D. Summary

In all, it seems several useful applications of TEEs exist.
These applications range widely, from banking to machine
learning to biometrics. The applications indicate the growing
necessity for TEEs in several scenarios. Hardware-based TEEs
can not always be implemented, as there is no control over
all participants in the network. In these cases, decentralized
blockchain solutions can be implemented to offer secure and
trusted code execution.

VII. CONCLUSION

Finally, to answer the question: “How can code be executed
in a secure and trusted manner?”, a brief summary of the
conclusions to the sub-questions will be given before drawing
a conclusion.

Executing code securely requires isolation and robust sys-
tems. Malicious or buggy code should not be able to alter or
damage the core components of a system.

Subsequently, executing code trustfully comes down to
three principles, those being authenticity, integrity and confi-
dentiality. We found that VMMs, a DRTM and remote attesta-
tion can all be utilized to enforce these requirements. Unfortu-
nately, we also found that recent technological developments
in processors have undermined the effectiveness of some of
these methods.

TEEs aim to offer us both secure and trusted execution,
however, their designs and implementation vary widely. Intel
SGX, a prominent contender in the TEE space, shows some
promise. However, several vulnerabilities exist, indicating that
it is not yet ready for adoption. Furthermore, implementations
such as Intel SGX and AMD SEV rely on specialized hard-
ware, restricting the amount of possible use cases. Projects



REFERENCES 10

like Keystone Enclave aim to create the next generation of
TEEs without assumptions on the hardware.

Other, more distributed systems, might also be used to
execute code in a secure and trusted manner. BOINC, a system
which enforces trust in computing through redundancy, has
proven quite effective and useful. Similar to this, blockchains
have shown to be capable of serving as a TEE. Through
several kinds of consensus protocols, trusted code execution
in a decentralized fashion is achieved. However, scalability
in these systems remains an issue for now as considerable
overhead is required to achieve trust.

Several ways of executing code in a secure and trusted
manner have been examined in this paper. Some more effective
than others. Hardware implementations of TEEs (e.g. SGX,
SEV) provide us with better speed and efficiency, but at the
cost of requiring specific hardware. Distributed and decen-
tralized solutions often do not operate under any hardware
assumptions, but at the cost of speed and efficiency. Both
options are useful depending on the use case. Recent advance-
ments in combating the scalability issue in these systems seem
promising. Blockchain technology is still in its early stages,
and much remains to be researched.

REFERENCES

[1] W. E. Wong, R. Gao, Y. Li, R. Abreu and F. Wotawa, “A
survey on software fault localization,” IEEE Transac-
tions on Software Engineering, vol. 42, no. 8, pp. 707–
740, 2016.

[2] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash
system, 2009. [Online]. Available: http://www.bitcoin.
org/bitcoin.pdf.

[3] V. Buterin et al., “A next-generation smart contract and
decentralized application platform,” White paper, 2014.

[4] M. Vukolić, “The quest for scalable blockchain fab-
ric: Proof-of-work vs. bft replication,” in Interna-
tional workshop on open problems in network security,
Springer, 2015, pp. 112–125.

[5] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A.
Juels, A. Kosba, A. Miller, P. Saxena, E. Shi, E.
Gfffdfffdn Sirer, D. Song and R. Wattenhofer, “On scal-
ing decentralized blockchains,” vol. 9604, Feb. 2016,
pp. 106–125, ISBN: 978-3-662-53356-7. DOI: 10.1007/
978-3-662-53357-4 8.

[6] D. P. Anderson, “Boinc: A system for public-resource
computing and storage,” in Proceedings of the 5th
IEEE/ACM International Workshop on Grid Computing,
IEEE Computer Society, 2004, pp. 4–10.

[7] A. Maña and A. Muñoz, “Trusted code execution in
javacard,” in International Conference on Trust, Pri-
vacy and Security in Digital Business, Springer, 2007,
pp. 269–279.

[8] J. Criswell, A. Lenharth, D. Dhurjati and V. Adve,
“Secure virtual architecture: A safe execution environ-
ment for commodity operating systems,” ACM SIGOPS
Operating Systems Review, vol. 41, no. 6, pp. 351–366,
2007.

[9] W. A. Arbaugh, D. J. Farber and J. M. Smith, “A secure
and reliable bootstrap architecture,” 1996.

[10] V. Costan, I. Lebedev and S. Devadas, “Sanctum: Mini-
mal hardware extensions for strong software isolation,”
in 25th {USENIX} Security Symposium ({USENIX}
Security 16), 2016, pp. 857–874.

[11] D. Kim, D. Jang, M. Park, Y. Jeong, J. Kim, S. Choi
and B. B. Kang, “Sgx-lego: Fine-grained sgx controlled-
channel attack and its countermeasure,” Computers &
Security, vol. 82, pp. 118–139, 2019.

[12] A. ARM, “Security technology building a secure sys-
tem using trustzone technology (white paper),” ARM
Limited, 2009.

[13] D. Kaplan, J. Powell and T. Woller, “Amd memory
encryption,” White paper, 2016.

[14] M. Morbitzer, M. Huber, J. Horsch and S. Wessel, “Sev-
ered: Subverting amd’s virtual machine encryption,” in
Proceedings of the 11th European Workshop on Systems
Security, ACM, 2018, p. 1.

[15] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk and
S. Devadas, “Aegis: Architecture for tamper-evident
and tamper-resistant processing,” ACM Press, 2003,
pp. 160–171.

[16] Security, https://en.oxforddictionaries.com/definition/
security, Accessed: 2019-03-22.

[17] T. Dettenborn, “Open virtual trusted execution environ-
ment,” 2016.

[18] M. Sabt, M. Achemlal and A. Bouabdallah, “Trusted
execution environment: What it is, and what it is not,”
in 2015 IEEE Trustcom/BigDataSE/ISPA, IEEE, vol. 1,
2015, pp. 57–64.

[19] D. Hutter, “Physical security and why it is important,”
Swansea: SANS Institute, 2016.

[20] R. Buyya, C. S. Yeo and S. Venugopal, “Market-
oriented cloud computing: Vision, hype, and reality
for delivering it services as computing utilities,” in
2008 10th IEEE international conference on high per-
formance computing and communications, Ieee, 2008,
pp. 5–13.

[21] A. D. JoSEP, R. KAtz, A. KonWinSKi, L. Gunho,
D. PAttERSon and A. RABKin, “A view of cloud
computing,” Communications of the ACM, vol. 53, no.
4, 2010.

[22] Total size of the public cloud computing market from
2008 to 2020 (in billion u.s. dollars), https : / / www.
statista.com/statistics/510350/worldwide-public-cloud-
computing/, Accessed: 2019-03-18.

[23] A. Ghosh and I. Arce, “Guest editors’ introduction:
In cloud computing we trust-but should we?” IEEE
security & privacy, vol. 8, no. 6, pp. 14–16, 2010.

[24] S. M. Habib, S. Hauke, S. Ries and M. Mühlhäuser,
“Trust as a facilitator in cloud computing: A survey,”
Journal of Cloud Computing: Advances, Systems and
Applications, vol. 1, no. 1, p. 19, 2012.

[25] C. Everett, “Cloud computing–a question of trust,”
Computer Fraud & Security, vol. 2009, no. 6, pp. 5–7,
2009.

[26] B. Michael, “In clouds shall we trust?” IEEE Security
& Privacy, vol. 7, no. 5, pp. 3–3, 2009.



REFERENCES 11

[27] A. Coveillo, H. Elias, P. Gelsinger and R. Mcaniff,
“Proof, not promises: Creating the trusted
cloud,” RSA White Paper, http://www. rsa.
com/innovation/docs/11319 TVISION WP 0211.
pdf, 2011.

[28] M. Christodorescu, R. Sailer, D. L. Schales, D. Sgan-
durra and D. Zamboni, “Cloud security is not (just)
virtualization security: A short paper,” in Proceedings of
the 2009 ACM workshop on Cloud computing security,
ACM, 2009, pp. 97–102.

[29] D. C. Latham, “Department of defense trusted computer
system evaluation criteria,” Department of Defense,
1986.

[30] S. Romana, H. Pareek and L. Eswari P R, “Dynamic
root of trust and challenges,” International Journal of
Security, Privacy and Trust Management, vol. 5, pp. 01–
06, May 2016. DOI: 10.5121/ijsptm.2016.5201.

[31] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter and A.
Seshadri, “Minimal tcb code execution,” in 2007 IEEE
Symposium on Security and Privacy (SP’07), IEEE,
2007, pp. 267–272.

[32] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter
and H. Isozaki, “Flicker: An execution infrastructure for
tcb minimization,” in ACM SIGOPS Operating Systems
Review, ACM, vol. 42, 2008, pp. 315–328.

[33] Trusted boot (tboot). [Online]. Available: https : / /
sourceforge.net/projects/tboot/.

[34] K. Eldefrawy, G. Tsudik, A. Francillon and D. Perito,
“Smart: Secure and minimal architecture for (establish-
ing dynamic) root of trust.,” in NDSS, vol. 12, 2012,
pp. 1–15.

[35] G. Coker, J. Guttman, P. Loscocco, A. Herzog, J.
Millen, B. O’Hanlon, J. Ramsdell, A. Segall, J. Sheehy
and B. Sniffen, “Principles of remote attestation,” Inter-
national Journal of Information Security, vol. 10, no. 2,
pp. 63–81, 2011.

[36] L. Gu, X. Ding, R. H. Deng, B. Xie and H. Mei,
“Remote attestation on program execution,” in Proceed-
ings of the 3rd ACM workshop on Scalable trusted
computing, ACM, 2008, pp. 11–20.

[37] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. Van Doorn
and P. Khosla, “Pioneer: Verifying code integrity and
enforcing untampered code execution on legacy sys-
tems,” in ACM SIGOPS Operating Systems Review,
ACM, vol. 39, 2005, pp. 1–16.

[38] M. Kiperberg, A. Resh and N. J. Zaidenberg, “Remote
attestation of software and execution-environment in
modern machines,” in 2015 IEEE 2nd International
Conference on Cyber Security and Cloud Computing,
IEEE, 2015, pp. 335–341.

[39] B. J. Parno, “Trust extension as a mechanism for secure
code execution on commodity computers,” 2010.

[40] S. McLean and S. Deane-Johns, “Demystifying
blockchain and distributed ledger technology–hype or
hero,” Computer Law Review International, vol. 17, no.
4, pp. 97–102, 2016.

[41] K. Wüst and A. Gervais, “Do you need a blockchain?”
In 2018 Crypto Valley Conference on Blockchain Tech-
nology (CVCBT), IEEE, 2018, pp. 45–54.

[42] M. Pisa and M. Juden, “Blockchain and economic
development: Hype vs. reality,” Center for Global De-
velopment Policy Paper, vol. 107, p. 150, 2017.

[43] G. Wood, “Ethereum: A secure decentralised gener-
alised transaction ledger,” Ethereum project yellow pa-
per, vol. 151, pp. 1–32, 2014.

[44] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis,
H. Ritzdorf and S. Capkun, “On the security and perfor-
mance of proof of work blockchains,” in Proceedings
of the 2016 ACM SIGSAC conference on computer and
communications security, ACM, 2016, pp. 3–16.

[45] A. Baliga, “Understanding blockchain consensus mod-
els,” in Persistent, 2017.

[46] V. Costan and S. Devadas, “Intel sgx explained.,” IACR
Cryptology ePrint Archive, vol. 2016, no. 086, pp. 1–
118, 2016.

[47] M. Castro and B. Liskov, “Practical byzantine fault
tolerance and proactive recovery,” ACM Transactions on
Computer Systems (TOCS), vol. 20, no. 4, pp. 398–461,
2002.

[48] J. Huang and D. M. Nicol, “Trust mechanisms for cloud
computing,” Journal of Cloud Computing: Advances,
Systems and Applications, vol. 2, no. 1, p. 9, 2013.

[49] K. Kostiainen, J.-E. Ekberg, N. Asokan and A. Rantala,
“On-board credentials with open provisioning,” in Pro-
ceedings of the 4th International Symposium on In-
formation, Computer, and Communications Security,
ACM, 2009, pp. 104–115.

[50] O. Goldreich, “Towards a theory of software protec-
tion,” in Conference on the Theory and Application
of Cryptographic Techniques, Springer, 1986, pp. 426–
439.

[51] M. Schwarz, S. Weiser and D. Gruss, “Practical
enclave malware with intel sgx,” ArXiv preprint
arXiv:1902.03256, 2019.

[52] J. Guilbon, Trustzone attack surface, 2018. [Online].
Available: https : / /blog .quarkslab.com/attacking- the-
arms-trustzone.html.

[53] The compartmentalization of arm trustzone, https : / /
blog.quarkslab.com/resources/2018- 06- 18- trustzone/
images/TrustZone.jpg, Accessed: 2019-03-19.

[54] S. Mofrad, F. Zhang, S. Lu and W. Shi, “A comparison
study of intel sgx and amd memory encryption technol-
ogy,” in Proceedings of the 7th International Workshop
on Hardware and Architectural Support for Security and
Privacy, ACM, 2018, p. 9.

[55] Keystone, https : / / keystone - enclave . org/, Accessed:
2019-04-04.

[56] P. Subramanyan, R. Sinha, I. Lebedev, S. Devadas and
S. A. Seshia, “A formal foundation for secure remote
execution of enclaves,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications
Security, ser. CCS ’17, Dallas, Texas, USA: ACM,
2017, pp. 2435–2450, ISBN: 978-1-4503-4946-8. DOI:



AN EXPLORATION OF TRUSTFUL, SECURE CODE EXECUTION AND ITS APPLICATIONS 12

10.1145/3133956.3134098. [Online]. Available: http:
//doi.acm.org/10.1145/3133956.3134098.

[57] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk and
S. Devadas, “Aegis: Architecture for tamper-evident and
tamper-resistant processing author retrospective,” 2015.

[58] M. Langheinrich, “A survey of rfid privacy approaches,”
Personal and Ubiquitous Computing, vol. 13, no. 6,
pp. 413–421, 2009.

[59] A. Fitzek, Development of an arm trustzone aware
operating system andix os, 2014.

[60] N. Szabo, “Formalizing and securing relationships on
public networks,” First Monday, vol. 2, no. 9, 1997.

[61] H. S. Galal and A. M. Youssef, “Trustee: Full privacy
preserving vickrey auction on top of ethereum,”

[62] M. Papermaster. (2018). Initial AMD Technical Assess-
ment of CTS Labs Research, [Online]. Available: https:
//community.amd.com/community/amd-corporate/blog/
2018/03/21/initial- amd- technical- assessment- of- cts-
labs-research (visited on 10/04/2019).

[63] J. Götzfried, M. Eckert, S. Schinzel and T. Müller,
“Cache attacks on intel sgx,” in Proceedings of the 10th
European Workshop on Systems Security, ACM, 2017,
p. 2.

[64] D. Kaplan, “Protecting vm register state with sev-es,”
White paper, Feb, 2017.

[65] C. Gentry, S. Halevi and N. P. Smart, “Fully homo-
morphic encryption with polylog overhead,” in Annual
International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Springer, 2012,
pp. 465–482.

[66] G. Zyskind, O. Nathan and A. Pentland, “Enigma:
Decentralized computation platform with guaranteed
privacy,” ArXiv preprint arXiv:1506.03471, 2015.

[67] M. Luongo and C. Pon, “The keep network: A pri-
vacy layer for public blockchains,” Tech. rep. URl:
https://keep. network/whitepaper, Tech. Rep.

[68] M. Crosby, P. Pattanayak, S. Verma, V. Kalyanaraman et
al., “Blockchain technology: Beyond bitcoin,” Applied
Innovation, vol. 2, no. 6-10, p. 71, 2016.

[69] J. N. Gray, “An approach to decentralized computer
systems,” IEEE Transactions on Software Engineering,
no. 6, pp. 684–692, 1986.

[70] F. Mennes. (2018). PSD2: Creating a Secure Execu-
tion Environment for Mobile Banking Apps, [Online].
Available: https : / / www . onespan . com / blog / psd2 -
secure - execution - environment - for - mobile - banking -
apps (visited on 11/04/2019).

[71] D. Bradbury, “The problem with bitcoin,” Computer
Fraud & Security, vol. 2013, no. 11, pp. 5–8, 2013.

[72] H. Watanabe, S. Fujimura, A. Nakadaira, Y. Miyazaki,
A. Akutsu and J. Kishigami, “Blockchain contract:
Securing a blockchain applied to smart contracts,”
in 2016 IEEE International Conference on Consumer
Electronics (ICCE), IEEE, 2016, pp. 467–468.

[73] I. Bentov, Y. Ji, F. Zhang, Y. Li, X. Zhao, L. Breiden-
bach, P. Daian and A. Juels, “Tesseract: Real-time cryp-
tocurrency exchange using trusted hardware.,” IACR
Cryptology ePrint Archive, vol. 2017, p. 1153, 2017.

[74] X. Leroy, “Bytecode verification on java smart cards,”
Software: Practice and Experience, vol. 32, no. 4,
pp. 319–340, 2002.

[75] B. A. Aubert and G. Hamel, “Adoption of smart cards
in the medical sector:: The canadian experience,” Social
Science & Medicine, vol. 53, no. 7, pp. 879–894, 2001.

[76] G. Kardas and E. T. Tunali, “Design and implementa-
tion of a smart card based healthcare information sys-
tem,” Computer methods and programs in biomedicine,
vol. 81, no. 1, pp. 66–78, 2006.

[77] M.-P. Pelletier, M. Trépanier and C. Morency, “Smart
card data use in public transit: A literature review,”
Transportation Research Part C: Emerging Technolo-
gies, vol. 19, no. 4, pp. 557–568, 2011.

[78] M. Reveilhac and M. Pasquet, “Promising secure el-
ement alternatives for nfc technology,” in 2009 First
International Workshop on Near Field Communication,
IEEE, 2009, pp. 75–80.

[79] P. Sharma. (2017). More Than One Billion Smartphones
with Fingerprint Sensors Will Be Shipped In 2018,
[Online]. Available: https://www.counterpointresearch.
com / more - than - one - billion - smartphones - with -
fingerprint- sensors- will- be- shipped- in- 2018/ (visited
on 11/04/2019).

[80] B. Miller, “Everything you need to know about auto-
mated biometric identification,” Security Technol. De-
sign, vol. 19, 1997.

[81] N. Evans, S. Marcel, A. Ross and A. B. J. Teoh,
“Biometrics security and privacy protection [from the
guest editors],” IEEE Signal Processing Magazine, vol.
32, no. 5, pp. 17–18, 2015.

[82] J. D. Woodward, “Biometrics: Privacy’s foe or privacy’s
friend?” Proceedings of the IEEE, vol. 85, no. 9,
pp. 1480–1492, 1997.


