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Abstract—SKIPTRAIN is a novel Decentralized Learning (DL)
algorithm, which minimizes energy consumption in decentralized
learning by strategically skipping some training rounds and
substituting them with synchronization rounds. These training-
silent periods, besides saving energy, also allow models to better
mix and produce models with superior accuracy than typical DL
algorithms. Our empirical evaluations with 256 nodes demon-
strate that SKIPTRAIN reduces energy consumption by 50% and
increases model accuracy by up to 12% compared to D-PSGD,
the conventional DL algorithm.

Index Terms—Decentralized Learning, Energy Efficiency, Peer-
to-Peer Learning Systems.

I. INTRODUCTION

Decentralized Learning (DL) represents an attractive alter-

native to centralized machine learning (ML), as it addresses

privacy concerns by not moving training data while eliminat-

ing the dependency on a central server [1]–[4]. An important,

yet overlooked problem of DL is the training energy consumed

by DL algorithms. Typically, nodes in DL algorithms per-

form the following operations each round: (i) locally training

the model; (ii) exchanging the model with neighbors; and

(iii) aggregating models received from neighbors. Most of the

energy consumption happens at training time (i), while that of

communication, i.e., (ii) and (iii), remains low. Specifically,

using the model adopted by Guerra et al. [5], model training

is more than 200× costlier in terms of energy than model

sharing and aggregation.

From an energy perspective, increasing the amount of

sharing and aggregation operations has a negligible impact on

the energy consumption. Furthermore, executing only sharing

and aggregation rounds leads the local models towards the

global consensus model, like the one produced by the central

server in federated learning (FL) or through a decentralized

all-reduce operation [6]. Based on this insight, we introduce

SKIPTRAIN, our novel DL algorithm where nodes skip some

training rounds (i.e., training, sharing, and aggregation) in

favor of synchronization rounds (i.e., sharing and aggregation).

SKIPTRAIN-CONSTRAINED extends SKIPTRAIN to operate

in scenarios in which nodes have energy constraints i.e., where

they are typically limited by individual energy budgets, such as
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in Internet-of-Things (IoT) networks [7]. Each node, depend-

ing on its energy capacity, makes an individual probabilistic

decision in every round to either engage in training or skip

training in favor of synchronization.

We evaluate the efficiency and performance of SKIPTRAIN

on non independent and identically distributed (non-IID) data

distributions using the CIFAR-10 and FEMNIST datasets. A

unique aspect of our experimental setup is the integration of

energy traces that we compiled by extending existing data [8].

SKIPTRAIN achieves a 50% reduction in energy consumption

and increases model accuracy by up to 7% compared to

decentralized parallel stochastic gradient descent (D-PSGD), a

standard and popular DL algorithm. In energy-constrained set-

tings, SKIPTRAIN-CONSTRAINED increases model accuracy

by up to 12% compared to D-PSGD. We conclude that SKIP-

TRAIN is an effective approach that gives DL practitioners a

flexible tool to decrease the energy impact of their DL tasks.

II. OUR APPROACH

SKIPTRAIN In SKIPTRAIN, a training round is similar to a

complete round in D-PSGD. A node i carries out the training

on the local data, sharing of the model with neighbors, and

aggregation of the received models. During a synchronization

round, however, only the sharing and aggregation steps are

executed. SKIPTRAIN follows a pattern of alternating between

a batch of Γtrain training rounds and Γsync synchronization

rounds. The target is to alternate training and synchronization

rounds such that the overall number of rounds does not

increase when compared to standard D-PSGD.

SKIPTRAIN-CONSTRAINED In settings where devices run

on batteries, nodes cannot perform arbitrarily many training

rounds because of energy constraints. Specifically, each node

i ∈ [N ] has a computational budget τi that defines the maxi-

mum number of training rounds that can be executed before its

battery is depleted. One way to incorporate these constraints

in D-PSGD would be to carry out consecutive training rounds

until the allocated energy budget is exhausted. For the re-

maining rounds, the node will execute only synchronization

rounds. We refer to this approach as GREEDY and use this as

a baseline. While SKIPTRAIN with injected synchronization

rounds between training rounds is energy-efficient, energy

budgets may still limit the number of training rounds that

a node can perform. In SKIPTRAIN-CONSTRAINED, nodes
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perform synchronization rounds just like SKIPTRAIN. How-

ever, in a training round, each node independently performs

or skips training based on training probabilities (pi) derived

out of its own energy budgets. Specifically, if T is the total

number of rounds executed by SKIPTRAIN, the maximum

number of training rounds that a node executes is given

by: Ttrain = Γtrain

Γtrain+Γsync
T , where Γtrain and Γsync are the

number of consecutive training and synchronization rounds,

respectively. We define the training probability of a node i as:

pi = min
(

τi
Ttrain

, 1
)

, where τi is the computational budget of

i.

III. EVALUATION

A. Experimental setup

Datasets In our experiments, we emulate 256 nodes con-

nected on d-regular topologies, with d ∈ {6, 8, 10}. SKIP-

TRAIN is evaluated on two well-known image classification

datasets: CIFAR-10 [9] and FEMNIST [10]. For the first

dataset, we consider a 2-shard non-IID data distribution. In

FEMNIST, we pick the top-256 clients with the highest

number of samples.

Training and Metrics We use Convolutional Neural Net-

work (CNN) architectures adapted from previous work [10]–

[12]. These models are trained with stochastic gradient descent

(SGD) and the Cross-Entropy loss function. We tuned the

learning rate (η) of each model with D-PSGD on a validation

set obtained by extracting 50% of the samples from the test set.

Hence, the validation and test sets are disjoint. We evaluate the

Top-1 accuracy on the validation and test sets, computed every

Γtrain + Γsync rounds. We use the validation set to optimize

our hyperparameters, including Γtrain and Γsync which are

introduced by SKIPTRAIN and the test set to determine model

accuracies during all other experiments.

Energy Model Following the same approach of [5], the

energy consumption of the training process for a node i ∈ [N ],
during a generic iteration t, is the product of the power con-

sumption of the hardware, P t
hw,i, and the duration of the task

Δt
i: E t

i = P t
hw,iΔ

t
i. Therefore, the total energy consumption of

all the nodes during T rounds is given by: E =∑T
t=1

∑N
i=1 Et

i .
In our evaluation, we consider networks consisting of four

different smartphones and we derive the energy consumption

by the training process for each device type. We first derive

the power consumption of each device type from the Burnout

benchmark [13]. Then, we obtain the inference time of one

data sample for MOBILENET-V2 from the AI benchmark [14].

We scale this inference time with the number of parameters

in the model, local steps, and the batch size to get the total

inference time. Finally, we compute the training time following

the methodology of the FedScale [8], i.e., scale the inference

time with the batch size and a multiplier of 3×.

Constrained Energy Budgets We obtain the maximum

number of training rounds that can be executed by each device

(τi) as the number of rounds to exhaust a certain percentage

of the battery capacity: 10% and 50% for CIFAR-10 and

FEMNIST, respectively.
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Fig. 1. Comparing SKIPTRAIN to D-PSGD in terms of test accuracy
and energy with 8-regular topology (left and middle). We also compare
SKIPTRAIN-CONSTRAINED with a greedy baseline (right).

B. Performance

SKIPTRAIN We compare the accuracy and the energy

consumption of SKIPTRAIN on a fixed number of total rounds

T on the CIFAR-10 and FEMNIST datasets. Figure 1 (left

and middle) shows the average test accuracy vs. rounds, and

test accuracy vs. training energy consumed for the optimized

combination of Γsync and Γtrain. SKIPTRAIN consistently

outperforms D-PSGD on CIFAR-10 by reaching on average

6% higher accuracy across all topologies. On the FEMNIST

dataset, SKIPTRAIN reaches similar test accuracy values as

D-PSGD while significantly reducing the energy consumption.

We observe that SKIPTRAIN consumes up to 2× less energy

on both datasets as SKIPTRAIN performs half the training

rounds.

SKIPTRAIN-CONSTRAINED In Figure 1 (right), we present

the test accuracy of each algorithm against the training

energy consumed. On the CIFAR-10 dataset, SKIPTRAIN-

CONSTRAINED outperforms both D-PSGD and GREEDY by

reaching up to 10% and 7% higher accuracies, respectively.

On the FEMNIST dataset, the performance gap is smaller, but

the trend remains the same.

IV. CONCLUSION

We introduced SKIPTRAIN, a novel DL algorithm devised

to reduce energy consumption in decentralized learning en-

vironments by selectively substituting training rounds with

synchronization rounds. Our next step is to address a main

limitations of our approach: the bias towards high-energy-

capacity devices. This is a problem because a focus on energy

efficiency can inadvertently bias the system towards high-

energy-capacity devices due to their more frequent participa-

tion in training rounds.
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