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ABSTRACT

Decentralized learning (DL) enables collaborative learning with-
out a server and without training data leaving the users’ devices.
However, the models shared in DL can still be used to infer training
data. Conventional defenses such as differential privacy and secure
aggregation fall short in effectively safeguarding user privacy in DL,
either sacrificing model utility or efficiency. We introduce Shatter,
a novel DL approach in which nodes create virtual nodes (VNs)
to disseminate chunks of their full model on their behalf. This
enhances privacy by (i) preventing attackers from collecting full
models from other nodes, and (ii) hiding the identity of the original
node that produced a given model chunk. We theoretically prove
the convergence of Shatter and provide a formal analysis demon-
strating how Shatter reduces the efficacy of attacks compared
to when exchanging full models between nodes. We evaluate the
convergence and attack resilience of Shatter with existing DL
algorithms, with heterogeneous datasets, and against three stan-
dard privacy attacks. Our evaluation shows that Shatter not only
renders these privacy attacks infeasible when each node operates 16
VNs but also exhibits a positive impact on model utility compared
to standard DL. In summary, Shatter enhances the privacy of DL
while maintaining the utility and efficiency of the model.
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1 INTRODUCTION

In Decentralized learning (DL), nodes collaboratively train a global
machine learning (ML) model without sharing their private data
with other entities [53]. The nodes are connected to other nodes,
called neighbors, via a communication topology. In each round,
nodes start with their local models and perform training steps
with their private datasets. Updated local models are exchanged
with neighbors in the communication graph and aggregated. The
aggregated model is then used to start the next round, and the
process repeats until convergence. Popular DL algorithms include
Decentralized parallel stochastic gradient descent (D-PSGD) [53],
Gossip learning (GL) [65], and Epidemic learning (EL) [18].
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In DL, the private data of participating nodes never gets shared.
While this is a major argument in favor of the privacy of DL solu-
tions, recent works have shown that model updates can be prone
to privacy violations in DL [17, 67]. For example, (i) membership
inference attacks (MIAs) [75] allow attackers to infer if a particular
data sample was used during training by a node, and (ii) gradient
inversion attacks (GIAs) [30, 97] allow the attackers to reconstruct
private data samples used for training. These privacy breaches de-
ter the adoption of DL algorithms in domains where privacy is
crucial, like healthcare and finance. Although numerous strategies
to protect the users’ privacy have been proposed in the centralized
settings for ML [52], there is a lack of adequate defenses against pri-
vacy attacks in DL. For instance, noise-based solutions bring privacy
at the cost of convergence [11, 92], and secure computation schemes
provide privacy at the cost of intricate node coordination [9, 57, 85],
resource overhead [85], or specialized hardware [14, 42].

To address the privacy concerns of DL without compromising its
utility and efficiency, we introduce Shatter, a novel DL system that
protects shared model updates from these privacy attacks. Shatter
consists of three key components: chunking, full sharing, and virtu-
alization. Chunking limits the access of receiving nodes to a model
chunk, i.e., a subset of all parameters rather than the full model,
thus contributing to privacy. Full sharing ensures that there is no
information loss as the sender shares each model parameter with
multiple nodes through one of the chunks, thus ensuring model
utility. Virtualization decouples identities from model chunks by
having each node operate multiple virtual nodes (VNs) that commu-
nicate model chunks with other VNs, thus further contributing to
privacy. Additionally, we randomize the communication topology
in each round to prevent an adversary from structurally attacking a
fixed set of nodes and to boost model utility. Compared to standard
DL, our approach does not sacrifice efficiency and only comes with
a manageable increase in communication volume.

Chunkingmay resemble sparsification, a communication-efficient
technique where nodes share subsets of their full model with oth-
ers [2]. However, the full sharing of Shatter disseminates all the
model chunks to different VNs, ensuring that all model parameters
of each node are shared and aggregated in each communication
round. Sparsification does not guarantee that all model parameters
are sent to other nodes. While studies have suggested that sharing
small model chunks can potentially be privacy-friendly as less in-
formation is shared among participants [74, 83, 97], to the best of
our knowledge, we are the first to leverage this to defend against
privacy-invasive attacks in DL.

We visualize the overall architecture of Shatter in Figure 1.
Standard DL algorithms (left) connect nodes directly in a com-
munication topology, and nodes exchange their full model with
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Figure 1: With standard decentralized learning (DL) (left), nodes continuously send their full model to other nodes in the

communication topology. With Shatter, nodes operate multiple VNs (middle) and VNs directly communicate with other VNs.

In addition, each VN sends a part of the full model of the real node (RN) to other VNs (right). This hides the identity of the

original node that produced a given model chunk.

neighbors every round. In Shatter (right), each node, which we
refer to as a real node (RN) in the context of Shatter, starts by
creating some virtual nodes (VNs) for itself. All the VNs then partici-
pate in the communication topology construction. In Shatter, RNs
perform the training and chunking of the models, whereas VNs are
responsible for disseminating model chunks through the communi-
cation topology. The right part of Figure 1 highlights how different
VNs send different model chunks, where grayed-out chunks are not
sent. Finally, model chunks received by VNs are forwarded back to
their corresponding RN and aggregated there. The next round is
then initiated, which repeats until model convergence.

We formally prove the convergence of Shatter and theoretically
demonstrate its privacy guarantees that provide an information-
theoretical interpretation of the experimental results, illustrating
the comprehensive privacy-preserving properties of Shatter. We
implement Shatter to empirically evaluate its robustness against
honest-but-curious adversaries that mount three standard attacks:
the linkability, membership inference, and gradient inversion attack.
Our experimental results show that Shatter provides significantly
better privacy protection than baseline approaches while improving
convergence speed and attainable model accuracy, at the cost of a
manageable increase in communication costs.

In summary, we make the following contributions:

• We introduce Shatter, a novel privacy-preserving DL al-
gorithm where real nodes (RNs) operate multiple virtual
nodes (VNs) and VNs share model chunks with each other
(Sections 3 and 4).
• We prove the convergence of Shatter with an arbitrary
number of local training steps between each communica-
tion round. Our bounds involve regularity properties of local
functions, the number of local steps, the number of VNs op-
erated by each RN, and the degree of random graphs sampled
at each communication round (Section 5.1).
• We formally show that Shatter improves the privacy of RNs
from an information-theoretical perspective as the number
of VNs operated by each RN increases. This offers analytical
insight into the diminishing efficacy of attacks exploiting
shared model parameters or gradient updates (Section 5.2).
• We implement Shatter and empirically compare its pri-
vacy robustness against state-of-the-art baselines and three
privacy-invasive attacks: the linkability attack (LA), MIA and

GIA (Section 6). Our results show that Shatter improves
model convergence and exhibits superior privacy defense
against the evaluated privacy attacks while also showcasing
higher model utility.

2 BACKGROUND AND PRELIMINARIES

In this work, we consider a decentralized setting where a set of
nodes N seek to collaboratively learn an ML model. This is also
known as collaborative machine learning (CML) [67, 76]. Each node
𝑖 ∈ N has its private dataset𝐷𝑖 to compute local model updates. The
data of each node never leaves the device. The goal of the training
process is to find the parameters of the model 𝜃 that performwell on
the union of the local datasets by minimizing the average loss across
all the nodes in the network. The most adopted CML approach is
federated learning (FL) which uses a parameter server to coordinate
the learning process [58].

Decentralized learning (DL) [5, 53, 64] is a CML algorithm in
which each node exchanges model updates with its neighbors
through a communication topology comprising of an undirected
graph G = (N , E) where N denotes the set of all nodes and
(𝑖 , 𝑗) ∈ E denotes an edge or communication channel between
nodes 𝑖 and 𝑗 (Figure 1, left). Amongmany variants, D-PSGD [46, 53]
is considered a standard algorithm to solve the DL training tasks.
At the start of D-PSGD, each node 𝑖 , with its loss function 𝑓𝑖 , iden-
tically initializes its local model 𝜃 (0)

𝑖
and executes the following:

(1) Local training. In each round 0 ≤ 𝑡 ≤ 𝑇 − 1 and each epoch
0 ≤ ℎ ≤ 𝐻 − 1, setting 𝜃 (𝑡 ,0)

𝑖
as 𝜃 (𝑡 )

𝑖
, node 𝑖 independently takes

samples 𝜉𝑖 from its local dataset, computes the stochastic gra-
dient ∇𝑓𝑖 (𝜃 (𝑡 ,ℎ)

𝑖
, 𝜉𝑖 ), and updates its local model as 𝜃 (𝑡 ,ℎ+1)

𝑖
←

𝜃
(𝑡 ,ℎ)
𝑖

− 𝜂∇𝑓𝑖 (𝜃 (𝑡 ,ℎ)
𝑖

, 𝜉𝑖 ), where 𝜂 is the learning rate.
(2) Model exchange. Node 𝑖 sends 𝜃 (𝑡 ,𝐻 )

𝑖
to and receives 𝜃 (𝑡 ,𝐻 )

𝑗
from

each of its neighbors 𝑗 in G.
(3) Model aggregation. Node 𝑖 mixes the local model parameters that

it receives from its neighbors with its own using a weighted
aggregation scheme as 𝜃 (𝑡+1)

𝑖
=

∑
{ 𝑗 :(𝑖 ,𝑗 ) ∈E}∪{𝑖 } 𝑤 𝑗𝑖𝜃

(𝑡 ,𝐻 )
𝑗

,
where𝑤 𝑗𝑖 is the ( 𝑗 , 𝑖)th entry of themixingmatrix𝑊 . A common
approach is to aggregate all the models with equal weights.
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After 𝑇 rounds, node 𝑖 adopts the final 𝜃 (𝑇 )
𝑖

, thereby terminat-
ing the DL training. The D-PSGD pseudocode is also provided in
Algorithm 2 in Appendix B.

2.1 Privacy Attacks in CML

A key property of CML algorithms is that training data never leaves
the node’s device, therefore providing some form of data privacy.
Nonetheless, an adversarial server or node may be able to extract
sensitive information from the model updates being shared with
them. We next outline three prominent privacy attacks in CML.

Membership inference attack (MIA). The goal of the MIA is to
correctly decide whether a particular sample has been part of the
training set of a particular node [40]. This is broadly a black-box
attack on the model, with the adversary having access to the global
training set and samples from the test set, which are never part of
the training set of any node. While we assume that the adversary
can access actual samples from the global training and test set,
this can be relaxed by generating shadow datasets [75]. Many MIA
attacks are based on the observation that samples included in model
training exhibit relatively low loss values as opposed to samples
that the model has never seen. Since the MIA can present a major
privacy breach in domains where sensitive information is used
for model training, this attack is widely considered a standard
benchmark to audit the privacy of ML models [86].

We evaluate the privacy guarantees of Shatter using a loss-
based MIA, mainly because of its simplicity, generality, and effec-
tiveness [67]. The adversary queries the received model to obtain
the loss values on the data samples. The negative of the loss values
can be considered as confidence scores, where the adversary can use
a threshold to output MIA predictions [87]. To quantify the attack
regardless of the threshold, it is common to use the ROC-AUC met-
ric (area under the ROC curve) on the confidence scores [56, 69].
Specifically, membership prediction is positive if the confidence
score exceeds a threshold value 𝜏 and negative otherwise. Hence, we
can compute the corresponding true positive rate (TPR) and false
positive rate (FPR) for each 𝜏 , resulting in the receiver operating
characteristic (ROC) curve.

Gradient inversion attack (GIA). With the GIA, the adver-
sary aims to reconstruct input data samples from the gradients
exchanged during the training process in CML [30, 97]. This is a
key privacy violation in contexts involving sensitive information,
such as personal photographs, medical records, or financial infor-
mation. Since the success of this attack depends on the information
contained in the gradients, this white-box attack in DL is performed
at the first communication round or convergence, when the gra-
dient approximation by the adversary is the best [67]. The GIA is
an optimization problem where the adversary performs iterative
gradient descent to find the input data that results in the input
gradients [20, 97]. More sophisticated GIAs on image data include
GradInversion [88] when the training is done on a batch of im-
ages, and ROG [92] using a fraction of gradients [92]. We use the
state-of-the-art GIA scheme ROG to evaluate Shatter. In addition,
we leverage artifacts and pre-trained weights of reconstruction
networks provided with ROG and assume that the adversary knows
the ground-truth labels of samples in the batch. These, however,

can also be analytically obtained from the gradients of the final
neural network layer [80, 95].

Linkability attack (LA). In the context of obfuscated model
updates, the LA allows an adversary to link a received obfuscated
update with the training set it came from [51]. Similar to the MIA,
this is a loss-based black-box attack on the model, but contrary
to MIA, the adversary has access to the training sets of each par-
ticipating node. The LA may also be performed on shadow data
representing the training sets of participating nodes instead of ac-
tual data. In the context of this work, we assume that the adversary
can access the actual training sets. An adversary performs a LA
on received model updates by computing the loss of each received
model update on each available training set and reporting the train-
ing set with the lowest loss. When the obfuscated update does
not contain the complete model update vector, e.g., when using
model sparsification, the adversary completes the vector with the
aggregated model updates from the previous round [51].

2.2 Threat Model

This work focuses on privacy-preserving DL in a permissioned
network setting where membership is strictly controlled and well-
defined. This aligns with the observation that DL is commonly
considered and deployed in enterprise settings, where network
membership is typically controlled [7]. Such settings include, for
example, hospitals collaborating on a DL task [73]. In permissioned
networks, all nodes are known entities with verified identities. Con-
sequently, we consider threats commonly found in open networks,
such as the Sybil Attack [25], beyond the scope of our work.

Ourwork focuses on the honest-but-curious (HbC) attackermodel,
i.e., participating nodes faithfully execute the learning protocol but
can attempt to retrieve sensitive information about the other nodes
from locally-available information. This attacker model is com-
monly adopted in related work on privacy in CML algorithms [16,
17, 57, 85, 92]. Thus, we adhere to a threat model that is locally
privacy-invasive, allowing any update that a node shares with any
other node to be potentially exploited to infer information about
their personal data used for training their local model in each round.
In particular, we do not consider that aggregated models of any
node in any round of communication are published or shared with
any third-party entity (e.g., a server). We also limit ourselves to a set-
ting where only participating nodes can be adversaries attempting
to compromise the privacy of other nodes in the network. Besides
received model updates, attacker nodes may also use knowledge
of their own model parameters to carry out attacks, and may store
historical model updates or other information they received and
act on this. Furthermore, all nodes can potentially be attackers.
However, we assume that nodes do not collude between them and
do not maliciously modify the model parameters. Such local-level
privacy risks (i.e., any information that leaves a node can be used
against them) are widespread in the literature [62] and in line with
some of the recently popularized threat models considered in prac-
tice [4, 99] that do not assume the presence of any trusted entity
responsible for aggregation or orchestrating the communication.
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3 MOTIVATION BEHIND SHATTER

The design of Shatter is anchored in three key insights into the
privacy challenges faced by conventional DL systems.

1) Naive (full) model sharing in DL reveals sensitive data.
A key aspect of collaborative ML mechanisms is that private data
never leaves the devices of participating users. While this might
give a sense of security, Pasquini et al. [67] recently demonstrated
how model sharing in standard DL settings can reveal sensitive
information. To show this empirically, we make each node conduct
a GIA during the first training round on the incoming models in
a standard DL setting with 100 nodes. Conducting the GIA during
the first training round (or close to convergence) is optimal for
the attack’s success [67]. Each node trains its local model (LeNet)
using a batch with 16 images from ImageNet, and adversaries (all
other nodes) attempt to reconstruct the images in this batch using
ROG [19]. We further elaborate the experiment setup in Section 6.1.

The results of ROG in DL for four random images are shown
in Figure 2a, with the original image in the top row and the recon-
structed image by the attacker in the second row. For each approach,
we also show the average LPIPS score of all 1600 images processed
during a training round [93]. This score indicates the perceptual
image patch similarity, where higher scores indicate more differ-
ences between the original and reconstructed image, i.e., the higher
the more private. We observe significant similarities between the
original and reconstructed images in DL settings, making it trivial
for an attacker to obtain knowledge and semantics of private train-
ing data of other users. Empirical findings highlighted by other DL
studies [67] and our experiments illustrate that naive model sharing
in DL falls short as a method for safeguarding data privacy, as they
reveal sensitive data even in early training rounds.

2) Partial model sharing can protect privacy. Intuitively,
sending only a subset of model parameters to other nodes raises
the bar for adversaries to obtain sensitive information, and can be
leveraged to increase privacy in DL systems. We note, however, that
partial model sharing, also known as sparsification, is typically em-
ployed to reduce communication cost [2, 45, 47, 55, 74, 77]. Instead
of sharing all model parameters, with sparsification, nodes only
send a fraction of the model updates, i.e., each node 𝑖 constructs
and shares a sparsified model 𝑆 (𝑡 )

𝑖
⊆ 𝜃
(𝑡 )
𝑖

in round 𝑡 . Typical spar-
sification approaches retain random parameters (random sharing)
or the ones with the highest gradient magnitudes (TopK sharing).

While the work of Yue et al. demonstrates how TopK sparsifica-
tion gives a false sense of privacy [92], there are key differences
in privacy guarantees between standard sparsification techniques.
To understand the privacy implications of using TopK and random
sharing, we conduct the GIA with these sharing methods. Figure 2b
shows the reconstructed images with ROG when the network uses
TopK sharing with 1

8 th of the model updates being communicated.
Even though the LPIPS score related to using TopK sharing is higher
than sharing full models (second row in Figure 2a), it is evident
that TopK sharing still allows an attacker to reconstruct potentially
sensitive information from private training datasets. This is because
TopK shares the parameters with the highest gradient magnitudes,
and hence, the ones that are the most influential in the training
round. Access to these parameters raises the effectiveness of the
GIA that relies on gradients to reconstruct private data.

The bottom row in Figure 2b shows the reconstructed images
by an adversary when each node randomly sends 1

8 th of its model
update to neighboring nodes (random sharing). Random sharing
yields blurry images, making it nearly impossible for an adversary
to obtain semantic information. This is also demonstrated by the
associated LPIPS score, which is nearly three times as high as when
using TopK sharing. While it is evident that random sharing is
effective at obfuscating updates in DL, partial model sharing has been
shown to hurt time-to-convergence and final achieved accuracy,
therefore prolonging the overall training process [23, 24, 38].

3) Noise-based solutions have drawbacks. Another approach
to increase privacy in CML is to add small perturbations (a.k.a.
noise) to model updates before sharing them with other nodes [82,
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to the corresponding RN who aggregates the received chunks into its local model and performs a training step (right).

90]. Noise-based mechanisms for DL with differential-privacy foun-
dations like Muffliato [17] have been theoretically proven to
converge while providing strong privacy guarantees. In practice,
though, adding noise for privacy protection can hurt the utility
of the model [67, 92]. We illustrate this by evaluating the conver-
gence and the success of the MIA for both EL, a DL variant where
the communication topology is refreshed every round, andMuf-
fliato on a non independent and identically distributed (non-IID)
partitioning of the CIFAR-10 dataset with a ResNet-18 model. We
comprehensively search for three noise levels inMuffliato, one
with an attack success close to DL, one with a low attack success
rate, and one in between. We run Muffliato with 10 communi-
cation rounds as recommended by the authors of Muffliato [17].
While this increases the communication cost of Muffliato by 10×
compared to DL, we consider this fair from a convergence and
privacy perspective.

Figure 3 shows our results and demonstrates the pitfalls of the
state-of-the-art noise-based DL solution Muffliato. The figure
shows the test accuracy and MIA attack resilience for DL andMuf-
fliato for three different noise levels (low: 𝜎 = 0.025, medium:
𝜎 = 0.05, high: 𝜎 = 0.1). While Muffliato (low) does reduce the
MIA success rate when compared to DL, this reduction is marginal.
The better convergence of Muffliato (low) can be attributed to
the 10 communication rounds inMuffliato, as opposed to 1 in DL.
Extra communication rounds enable nodes to better aggregate the
models across the network. We also observe that model training
with Muffliato (medium) breaks down after roughly 45 rounds
into training. This is because noise introduces numerical instability
in the learning process, leading to nan (not a number) loss values.
On the other hand, Muffliato (high) handicaps the model utility,
as there is no convergence (Figure 3, left). Its better performance
in MIA is, hence, not representative of the learning process. We
emphasize that there is no way to predict the noise levels inMuf-
fliato, and in similar solutions. Furthermore, Yue et al. empirically
show that noise-based solutions hurts the final accuracy when re-
ducing the success of GIA [92]. The results in Figure 3 highlight the
need for practical privacy-preserving solutions that do not adversely
affect the convergence of DL tasks.

4 DESIGN OF SHATTER

Based on the observations in Section 3, we present the design
of Shatter. The essence of Shatter is to exchange a randomly

selected subset of parameters rather than the entire set (chunking)
while still disseminating all the parameters through the network
to not lose convergence (full sharing). Shatter achieves this by
having each real node (RN) operate multiple virtual nodes (VNs)
(virtualization) and the VNs communicate random model chunks
with other VNs in the network. Our design enhances the privacy
of DL as it significantly complicates the task of adversarial RNs to
extract sensitive information from received model chunks.

4.1 System Model

In Shatter, each participating RN spawns and operates VNs. We
call an RN 𝑁𝑖 the parent of a certain VN if the latter was spawned
by 𝑁𝑖 . Each VN has a unique identifier that identifies the node in
the network. We assume a permissioned network, a standard as-
sumption of many DL approaches. In the 𝑡 th communication round,
let G𝑡 = (V , E𝑡 ) be the graph on the VNs, where V is the set of
VNs and E𝑡 is the set of edges (communication) established be-
tween the VNs in round 𝑡 . Shatter connects VNs using a 𝑟 -regular
communication graph, which is a commonly used topology across
DL algorithms due to its simplicity and load balancing. With this
topology, each VN has exactly 𝑟 incoming and outgoing edges, i.e.,
each VN sends to and receives from 𝑟 other VNs. The convergence
of DL on 𝑟 -regular graphs has extensively been studied [18]. RNs
and VNs can go offline or come back online during model training.

In line with Section 2.2, we consider all RNs to be honest-but-
curious, i.e., the participating RNs faithfully execute the protocol
but may attempt to retrieve sensitive information about the other
RNs from the model updates it receives through its VNs. We assume
that every VN works in the best interest of their corresponding
RNs, i.e., an adversarial RN can leverage all its VNs to participate
in the attack. We consider that the RNs have full control over their
respective VNs in a sense that: 𝑖) every RN knows which other VNs
its own VNs have communicated with in a given training round,
and 𝑖𝑖) the information about which parent RN controls a given VN
cannot be retrieved by any external VN or RN (i.e., the link between
any RN and its VNs is hidden from everyone else in the network).

4.2 ShatterWorkflow

We show the full workflow of Shatter in Figure 4 and provide
pseudocode in Algorithm 1. The key notations used to describe and
analyze the working of Shatter are summarized in Appendix A.
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Algorithm 1: Shatter from the perspective of RN 𝑁𝑖

1 Initialize 𝜃 (0)
𝑖

2 Spawn 𝑘 VNs: 𝑣𝑖 (1), . . . 𝑣𝑖 (𝑘)
3 for 𝑡 = 0, . . . ,𝑇 − 1 do

4 𝜃
(𝑡 ,0)
𝑖

← 𝜃
(𝑡 )
𝑖

5 for ℎ = 1, . . . ,𝐻 do

6 𝜉𝑖 ← mini-batch sampled from 𝐷𝑖

7 𝜃
(𝑡 ,ℎ+1)
𝑖

← 𝜃
(𝑡 ,ℎ)
𝑖

− 𝜂∇𝑓𝑖 (𝜃 (𝑡 ,ℎ)
𝑖

, 𝜉𝑖 )
8 Chunk 𝜃

(𝑡 ,𝐻 )
𝑖

into 𝑘 chunks
9 for 𝑠 = 1, . . . ,𝑘 do

10 Forward chunk 𝑠 to 𝑣𝑖 (𝑠) for every 𝑠 ∈ [𝑘]
11 Randomize communication topology G𝑡
12 Receive 𝑟 chunks from each of the 𝑘 VNs
13 Aggregate the received chunks to produce 𝜃 (𝑡+1)

𝑖

14 return 𝜃
(𝑇 )
𝑖

In Shatter, each participating real node (RN) creates a set of 𝑘
VNs for itself (Line 2). These VNs are, in practice, implemented as
processes on remote systems. To streamline our analysis, we work
under the assumption that each RN operates the same number of
VNs. We show in Section 5.2 that increasing 𝑘 , i.e., spawning more
VNs, reduces the vulnerability against privacy attacks.

At the start of each training round 𝑡 , each RN first updates its
local model using its private dataset (Lines 5–7). The RN then
segments its local model into 𝑘 smaller model chunks (chunking-
specifications are given later) and forwards these to its VNs that
multicast the model on the RN’s behalf (full sharing – Lines 8–10).
We also visualize this in Figure 4 (left) where some real node 𝑁𝑖

segments its local model into three chunks 𝐶𝑖 ,1,𝐶𝑖 ,2, and 𝐶𝑖 ,3, each
of which is forwarded to a VN of 𝑁𝑖 . In standard DL algorithms,
RNs directly communicate their model updates. Shatter instead
connects VNs in a communication topology G𝑡 that is randomized
every round (Line 11), also see Figure 4 (middle). In Shatter, VNs
thus act as communication proxy for model chunks created by RNs.
All model chunks received by a VN during a training round are for-
warded back to its parent RN and aggregated into the local model
(Line 13). This is also visualized in Figure 4 (right) where an RN
𝑁𝑖 receives model chunks from the VNs operated by RNs 𝑁 𝑗 ,𝑁𝑘 ,
and 𝑁𝑙 . We note that RN 𝑁𝑖 is oblivious to the identity of the RNs
behind the received model chunks. In essence, from the perspective
of a single real node, it sends out the same model parameters as in
standard DL. While a real node sends a smaller subset of random
parameters to one virtual node, it also sends the remaining param-
eters in chunks to other virtual nodes, which ultimately enhances
privacy without adverse effects on convergence.

Model chunking strategy. Each node randomly samples pa-
rameters to chunk its local model without replacement. With this
strategy, a RN sends distinct parameters to its VNs. Thus, in one
round, two chunks from the same RN will always be disjoint. and,
hence, an adversary cannot put together two chunks originating
from the same real node based on an intersection of parameters.

Additionally, we use static model chunking (i.e., fixed across
rounds) where all RNs follow an identical chunking strategy (i.e.,

they choose the exact same partitions by having a shared seed).
That is, each VN is responsible for the same set of parameter indices
across rounds. We acknowledge that alternative model chunking
strategies are possible, and describe some of these strategies and
their impact on privacy in Appendix C.

Dynamic topologies. To enhance the privacy and efficiency
of Shatter, we build Shatter over EL, the state-of-the-art DL
algorithm where the communication topology G𝑡 is refreshed in
every training round 𝑡 . The benefits of having dynamic topologies
over static topologies in Shatter are twofold. Firstly, it restricts any
attacker from receiving model chunks consistently from a VN of the
same victim node. This reduces the chances of attacks that target
specific nodes as an attacker is unable to reliably obtain model
chunks from the victim across training rounds. Secondly, dynamic
topologies converge faster than static ones thanks to the better
mixing of the models [18]. We argue, however, that the components
of Shatter are generic enough to be compatible with other DL
baselines, such as D-PSGD or variants.

Refreshing G𝑡 each round can be achieved by having VNs partic-
ipate in topology construction using a decentralized peer-sampling
service [43, 63, 79]. In this paper, we stick to the EL-Oraclemodel [18]
in which a central coordinator agnostic of the identities of RNs cre-
ates a random 𝑟 -regular topology of only VNs every training round.
We assume that nodes faithfully participate in the construction
of the communication topology, which can be achieved by using
accountable peer sampling services [3, 89].

Model aggregation. After the VNs forward the received model
parameters back to their parent RN, each RN receives the same
total number of parameters in a r-regular topology, but the count of
incoming parameters at a particular index may differ. Shatter uses
a parameter-wise weighted averaging where the weight is propor-
tional to the frequency of how often this parameter is received. For
example, if a parameter 𝑝 is received two times, 𝑝1 and 𝑝2 referring
to these individual parameters, a RN will average 𝑝1, 𝑝2 and the
same parameter in its local model while using an averaging weight
of 1

3 for each parameter. Moreover, it might occur that a RN does
not receive a particular parameter at all, in which case it will simply
adopt the parameter in its local model.

5 THEORETICAL ANALYSIS

Notations. Let N = {𝑁1, . . . ,𝑁𝑛} be the RNs in the network.
Setting 𝑑 ∈ N as the dimension of the parameter space, let 𝜃 (𝑡 )

𝑖
=

(𝜃 (𝑡 )
𝑖
(1), . . . ,𝜃 (𝑡 )

𝑖
(𝑑)) ∈ R𝑑 be the model held by 𝑁𝑖 in round 𝑡

for every 𝑖 ∈ [𝑛]. Each RN is assumed to have 𝑘 VNs, with 𝑣𝑖 (𝑠)
denoting the 𝑠th VN of 𝑁𝑖 for all 𝑖 ∈ [𝑛] and 𝑠 ∈ [𝑘], and V =

{𝑣𝑖 (𝑠), 𝑖 ∈ [𝑛], 𝑠 ∈ [𝑘]} being the set of all VNs. Let 𝜃 (𝑡 )
𝑖 ,𝑠 be the

chunk of 𝑁𝑖 ’s model that is forwarded to 𝑣𝑖 (𝑠) in round 𝑡 . For every
𝑖 , 𝑗 ∈ [𝑛] and 𝑝 ∈ [𝑑], let 𝜃 (𝑡 )

𝑖←𝑗
(𝑝) denote the 𝑝th parameter of

𝑁 𝑗 ’s model that is shared with 𝑁𝑖 and, correspondingly, let 𝜃 (𝑡 )𝑖←𝑗
be

the entire contribution that 𝑁𝑖 receives from 𝑁 𝑗 ’s model updates
(via the interaction of their VNs) for aggregation leading up to the
next communication round. Analogously, let 𝜃 (𝑡 )

𝑖↚𝑗
be the part of

𝑁 𝑗 ’s model that 𝑁𝑖 has not received in round 𝑡 via their VNs. Let
6
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��� and ���𝜃 (𝑡 )𝑖↚𝑗

��� denote the number of model parameters of 𝜃 (𝑡 )
𝑗

that are shared and not shared with 𝑁𝑖 , respectively, in round 𝑡 (i.e.,���𝜃 (𝑡 )𝑖←𝑗

��� + ���𝜃 (𝑡 )𝑖↚𝑗

��� = 𝑑). In the subsequent analysis, we assume that:
𝑖 . the number of model parameters held by each VN is the same
(i.e., 𝑑 = 𝑘𝑐 for some 𝑐 ∈ N). Thus, the chunking partitions
the model of the corresponding RN into 𝑘 equal parts, each
with 𝑐 parameters).

𝑖𝑖 . the 𝑘𝑛 total VNs form an 𝑟 -regular dynamic topology, for
some 1 ≤ 𝑟 ≤ 𝑛𝑘 − 1, facilitating interaction among them for
the exchange of the model chunks they individually hold.

5.1 Convergence of Shatter

For 𝑖 ∈ [𝑛], let 𝑓𝑖 : R𝑑 → R be the loss of node 𝑁𝑖 with respect to its
own dataset, and let 𝑓 = 1

𝑛

∑𝑛
𝑖=1 𝑓𝑖 the function that the nodes seek

to minimize. Nodes will alternate between rounds of 𝐻 ≥ 1 local
stochastic gradient steps and communication rounds, that consist
of communications through VNs.

We recall that G𝑡 = (V , E𝑡 ) is the 𝑟 -regular communication
graph on the VNs in round 𝑡 and let E𝑡 (the set of edges of G𝑡 ) be
sampled onV uniformly at random and independently from the
past. A communication round consists of a simple gossip averaging
in the VN graph – this could be refined with accelerated gossip av-
eraging steps [27] or compressed communications [47] for instance.
Note that for computation steps, no noise is added, as opposed to
other decentralized privacy-preserving approaches, such as [17] for
gossip averaging or [16, 26] for token algorithms. As with commu-
nications, computations are also assumed to be synchronous, and
employing asynchronous local steps, such as asynchronous SGD,
would require a more complex and involved analysis [60, 96]. We
can now write the updates of the training algorithm as follows.

(1) Local steps. For all 𝑖 ∈ [𝑛], let 𝜃 (𝑡 ,0)
𝑖

= 𝜃
(𝑡 )
𝑖

and for ℎ ≤ 𝐻 − 1,

𝜃
(𝑡 ,ℎ+1)
𝑖

= 𝜃
(𝑡 ,ℎ)
𝑖

− 𝜂𝑔 (𝑡 ,ℎ)
𝑖

,

where 𝜂 > 0 is the learning rate and 𝑔 (𝑡 ,ℎ)
𝑖

= ∇𝑓𝑖 (𝜃 (𝑡 ,ℎ)
𝑖

, 𝜉𝑖 )
a stochastic gradient of function 𝑓𝑖 computed on the mini-
batch 𝜉𝑖 sampled independently from the past.

(2) Communication step. Let 𝜃 (𝑡 )
𝑖

= 𝜃
(𝑡 ,𝐻 )
𝑖

and for a VN 𝑣𝑖 (𝑠),
let 𝜃 (𝑡 )

𝑣𝑖 (𝑠 ) be its model chunk. Then, an averaging operation
is performed on the graph of virtual nodes:

𝜃
(𝑡+1)
𝑖

=

𝑘∑︁
𝑠=1

1
𝑟

∑︁
𝑤∈V:{𝑣𝑖 (𝑠 ) ,𝑤}∈E𝑡

𝜃
(𝑡 )
𝑤 .

Theorem 1. Assume that functions 𝑓𝑖 are 𝐿−smooth, 𝑓 is lower
bounded and minimized at some 𝜃★ ∈ R𝑑 , the stochastic gradients
are unbiased (i.e., E

[
𝑔
(𝑡 ,ℎ)
𝑖

]
= ∇𝑓𝑖

(
𝜃
(𝑡 ,ℎ)
𝑖

)
∀ 𝑖 , 𝑡 ,ℎ) of variance up-

per bounded by 𝜎2: 1
𝑛

∑𝑛
𝑖=1 E

[𝑔 (𝑡 ,ℎ)
𝑖
− ∇𝑓𝑖 (𝜃 (𝑡 ,ℎ)

𝑖
)
2

]
≤ 𝜎2 , and

let 𝜁 2 be the population variance, that satisfies:

∀𝜃 ∈ R𝑑 , 1
𝑛

𝑛∑︁
𝑖=1
∥∇𝑓𝑖 (𝜃 ) − ∇𝑓 (𝜃 )∥2 ≤ 𝜁 2 .

Finally, assume that 𝜌 < 1, where 𝜌 is defined in Equation (3) in the
proof of Lemma 5. Then, for all𝑇 > 0, setting 𝐹0 = 𝑓 (𝜃 (0) ) − 𝑓 (𝜃★),

there exists a constant stepsize 𝜂 > 0 such that:

1
𝑇

∑︁
𝑡<𝑇

E

[∇𝑓 (𝜃 (𝑡 ) )2
]
= O

(√︂
𝐿𝐹0𝜎2

𝑛𝐻𝑇
+ 𝐿𝐹0
𝑇 (1 − 𝜌)

+
[
𝐿𝐹0

(
𝐻𝜁 + 𝜎

√︁
(1 − 𝜌)𝐻 )

(1 − 𝜌)𝐻𝑇

] 2
3 ª®¬ ,

The proof is postponed to Appendix F.1 and involves an inter-
mediate result given as Lemma 5 preceding the proof of the main
result. The convergence bound shows that Shatter finds first-order
stationary points of 𝑓 and. As 𝑓 is non-convex, we fall back to show
that the algorithm will find an approximate first-order stationary

point of the objective [12]. The first term
√︃

𝐿𝐹0𝜎2

𝑛𝐻𝑇
is the statistical

rate and is the largest as 𝑇 increases. 𝑛𝐻𝑇 is precisely the number
of stochastic gradients computed up to iteration 𝑇 , and this term
cannot be improved [12]. The second and third terms are then lower
order terms: for 𝑇 = Ω(𝑛𝐻 (1 − 𝜌)−2), the first term dominates.

Finally, the assumption 𝜌 < 1 needs to be verified. For large 𝑛, it
will always be satisfied for 𝑟 > 1. In the 𝑛-large regime, 𝜌 scales as
𝜌 ∼ 1

𝑟 and, thus, increasing 𝑟 will always lead to faster communica-
tions. However, it appears that 𝜌 only needs to be bounded away
from 1, as only the 1/(1 − 𝜌) factor appears in the rate. Having
𝜌 ≤ 1/2 is sufficient to obtain the best rates, and this only requires
𝑟 = O(1). There is no need to scale 𝑟 with 𝑛, and the graph of virtual
nodes can have bounded degrees.

5.2 Privacy Guarantees

Under the assumed threat model (see Section 4.1) and staying con-
sistent with the experimental evaluation (see Section 6.3), we have
that for any given RN 𝑁 𝑗 in the network, every other RN who
receives any part of 𝑁 𝑗 ’s model in any given round could inde-
pendently act as a potential HbC adversary trying to compromise
𝑁 𝑗 ’s privacy. It is important to recall that, as we do not consider
collusion, the privacy-invasive attacks are pairwise independent
between the RNs. In other words, if N( 𝑗 , 𝑡) ⊂ N is the set of all
the RNs that receive some parts of 𝑁 𝑗 ’s model in a certain round
𝑡 through the interaction between their corresponding VNs, we
assume that each 𝑁𝑖 ∈ N ( 𝑗 , 𝑡) can independently use the informa-
tion at their disposal to compromise the privacy of 𝑁 𝑗 . However,
the neighbors of 𝑁 𝑗 do not exchange information between them to
impose a colluded attack against 𝑁 𝑗 . Therefore, in order to examine
the privacy guarantees for any RN 𝑁 𝑗 , it suffices to carry out the
analysis from the perspective of any 𝑁𝑖 ∈ N ( 𝑗 , 𝑡). Hence, in the
subsequent analysis, without loss of generality, we fix a certain RN
𝑁 𝑗 as a potential victim and, correspondingly, an HbC adversarial
RN 𝑁𝑖 ∈ N ( 𝑗 , 𝑡) trying to compromise the privacy of 𝑁 𝑗 , thus
proceeding to study how Shatter improves the privacy of any RN
present in the network.

Setting 𝜃
(𝑡 )
𝑖←𝑣𝑖 (𝑠 ) (𝑝) as the model parameter 𝑝 ∈ [𝑑] that 𝑁𝑖

receives from its VN 𝑣𝑖 (𝑠) for any 𝑠 ∈ [𝑘] after any communication
round 𝑡 , for every 𝑗 , 𝑗 ′ ∈ [𝑛], 𝑗 ≠ 𝑗 ′, we have:

P
[
𝜃
(𝑡 )
𝑖←𝑣𝑖 (𝑠 ) (𝑝) = 𝜃

(𝑡 )
𝑖←𝑗
(𝑝)

]
= P

[
𝜃
(𝑡 )
𝑖←𝑣𝑖 (𝑠 ) (𝑝) = 𝜃

(𝑡 )
𝑖←𝑗 ′ (𝑝)

]
.

This is because the system model of Shatter (as described in Sec-
tion 4.1) assumes that the VNs that communicate with 𝑣𝑖 (𝑠) do

7
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not reveal any information about their respective parent RNs and,
thus, the model parameters transmitted by them to 𝑣𝑖 (𝑠) (which, in
turn, 𝑁𝑖 receives) are equiprobable to come from any of the other
participating RNs. Hence, by achieving perfect indistinguishability
among the RNs w.r.t. the model parameters received in any com-
munication round, we analyze the probabilistic characteristics of
the received model parameters to establish a fundamental under-
standing of how empirical risks are influenced in the face of attacks
relying on shared model updates (e.g., GIA).

Theorem 2. For any 𝑖 , 𝑗 ∈ [𝑛] with 𝑖 ≠ 𝑗 and 𝑡 > 0, P
[���𝜃 (𝑡 )𝑖↚𝑗

��� = 0
]
,

is a decreasing function of 𝑘 .

Remark 1. Theorem 2 implies that under Shatter, the probability
of the entire model of any RN being shared with another RN in any
communication round decreases with an increase in the number of
VNs. The proof is postponed to Appendix F.2.

Theorem 3. For any 𝑖 , 𝑗 ∈ [𝑛] with 𝑖 ≠ 𝑗 and 𝑡 > 0, E
[���𝜃 (𝑡 )𝑖↚𝑗

���] is an
increasing function of 𝑘 .

Remark 2. Theorem 3 ensures that under Shatter, the expected
number of model parameters received by any RN from any other
RN decreases with an increase in the number of VNs. The proof is
postponed to Appendix F.3.

In order to formalize the impact of Shatter on the privacy
of the shared model parameters between the RNs from an infor-
mation theoretical perspective, we now analyze the mutual in-
formation (MI) [72] (the definition is provided in Appendix F.4)
between the model parameters that are shared (observation of an
attacker) and not shared (secrets) between any pair of RNs. MI and
its close variants (e.g., conditional entropy) have been shown to
nurture a compatible relationship with formal privacy guarantees
like differential privacy (DP) [15] and have been shown to capture
an operational interpretation of an attacker model [48]. MI mea-
sures the correlation between observations and secrets and its use
as a metric to provide an information theoretical understanding of
privacy is widespread in the literature. Some noteworthy examples
include: gauging anonymity [13, 98], estimating privacy in training
ML models with a cross-entropy loss function [1, 41, 70, 78], and
assessing location-privacy [8, 66].

Assumption 1. For any 𝑖 , 𝑗 ∈ [𝑛] and 𝑡 > 0, 𝜃 (𝑡 )
𝑗
∼ N

(
𝝁 (𝑡 )
𝑗

, Σ(𝑡 )
𝑗

)
for some mean 𝝁 (𝑡 )

𝑗
∈ R𝑑 and covariance matrix Σ

(𝑡 )
𝑗
∈ R𝑑×𝑑 .

Assumption 2. There exists 𝐵 ∈ R such that
(
Σ
(𝑡 )
𝑗

)
𝑝𝑝′
≤ 𝐵 for all

𝑝 ,𝑝′ ∈ [𝑑].
Assumption 3. Let 𝑑 (𝑡) be the number of model parameters of
𝑁 𝑗 that 𝑁𝑖 receives through the interaction of their respective
VNs in round 𝑡 . Setting 𝑋𝑖 𝑗 = 𝜃

(𝑡 )
𝑖←𝑗

and 𝑌𝑖 𝑗 = 𝜃
(𝑡 )
𝑖↚𝑗

, the eigen-
values of the Schur complement Σ(𝑡 )

𝑗
/Σ(𝑡 )

𝑌𝑖 𝑗
of the block Σ

(𝑡 )
𝑌𝑖 𝑗

in

Σ
(𝑡 )
𝑗

=
©«
Σ
(𝑡 )
𝑋𝑖 𝑗

Σ
(𝑡 )
𝑋𝑖 𝑗𝑌𝑖 𝑗

Σ
(𝑡 )
𝑌𝑖 𝑗𝑋𝑖 𝑗

Σ
(𝑡 )
𝑌𝑖 𝑗

ª®¬ are bounded below and above by 𝛼 and

𝛽 , respectively.

Assumption 4. Σ
(𝑡 )
𝑗

, Σ(𝑡 )
𝑋𝑖 𝑗

, and Σ
(𝑡 )
𝑌𝑖 𝑗

are positive-definite.

Theorem 4. If Assumptions 1 to 4 hold, for any 𝑖 , 𝑗 ∈ [𝑛] with 𝑖 ≠ 𝑗

and 𝑡 > 0, we have 𝐼
(
𝜃
(𝑡 )
𝑖←𝑗

;𝜃 (𝑡 )
𝑖↚𝑗

)
≤ Γ�̂�𝑑 (𝑡 )𝑑 (𝑡)𝑑 (𝑡 )/2,

where Γ =

(
𝛼
𝛽

) tr
(
Σ
(𝑡 )
𝑗
/Σ(𝑡 )

𝑌𝑖 𝑗

)
𝛽−𝛼 and �̂� = 𝐵

(
𝛽𝛼

𝛼𝛽

) 1
𝛽−𝛼 .

Remark 3. Due to Theorem 4, Shatter guarantees that, for a cer-
tain pair of RNs 𝑁𝑖 and 𝑁 𝑗 , MI between the model parameters of 𝑁 𝑗

that are shared and not shared with 𝑁𝑖 in a certain round of commu-
nication of their respective VNs is bounded above by an increasing
function of the number of parameters of 𝑁 𝑗 ’s model that is shared
with 𝑁𝑖 and bounded below by 0 by the definition of MI. Further-
more, recalling that Theorem 3 ensures that the expected number
of model parameters shared between any pair of RNs decreases
with an increase in the number of VNs, we essentially guarantee
that in every round of Shatter, MI decreases in expectation and,
thus, the information-theoretical privacy guarantees of the RNs
formally get stronger as the number of VNs increases. The proof of
Theorem 4 is postponed to Appendix F.4.

One of the important implications jointly posed by Theorems
2, 3, and 4, as highlighted by Remark 3, is that with an increase in
the number of VNs, the chances of an attacker to receive the full
model of any user and the average number of model parameters
exchanged between the RNs will both decrease and, consequently,
the information-theoretical privacy guarantees (parameterized by
MI) for the RNs will improve. These results, in turn, provide ana-
lytical insight into how Shatter is more resilient towards attacks
that rely on exploiting the shared model parameters or gradient
updates in their entirety. In particular, the conclusions drawn from
Theorems 2, 3, 4, and Remark 3, provide an information-theoretical
understanding of how Shatter effectively safeguards against the
gradient inversion attack, as evidenced by the experimental results
in Figure 8. The findings indicate the diminished effectiveness of
gradient inversion attacks with an increasing number of VNs.

Remark 4. Although the privacy of Shatter is studied under the
assumption of no collusion in the network, it is noteworthy that
the preceding analysis can be extended to scenarios where HbC
RNs collude to compromise the privacy of another RN. Colluding
RNs targeting a victim RN 𝑁 𝑗 can be modelled as 𝑁 𝑗 making larger
chunks of its model. As shown above, Shatter enhances 𝑁 𝑗 ’s
privacy as the number of VNs increases. Thus, Shatter would
continue to offer better privacy guarantees compared to EL as long
as some level of chunking is maintained, with the worst-case (where
all RNs collude against 𝑁 𝑗 ) being equivalent to that of EL.

5.3 Overhead of Shatter

Compared to standard DL algorithms such as D-PSGD, Shatter
incurs some communication and operational overhead. This can be
considered as the price one has to pay for the privacy protection
offered by Shatter. We now analyze these costs.

Communication Costs. We first compare the communication
cost of Shatter with that of D-PSGD, in terms of parameters sent.
In line with the rest of the paper, we use 𝑟 to refer to the topology

8
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degree, 𝑘 indicates the number of VNs each RN deploys, and 𝑑

indicates the number of parameters in a full model.
For simplicity, we derive the communication cost from the per-

spective of a single node. In D-PSGD, a node sends 𝑑 parameters to
𝑟 nodes, incurring a per-node communication cost of 𝑑𝑟 . Thus, the
communication cost of D-PSGD (and other standard DL algorithms)
scales linearly in the model size and topology degree.

In Shatter, VNs are controlled and hosted by their correspond-
ing RN. Therefore, the communication perspective of RN should
include the cost of RN–VN communication as well. We separately
analyze the communication cost in each of the following three
phases of the Shatter workflow.

(1) RN→ VNs. In Shatter, each RN first sends a model chunk
of size 𝑑

𝑘
to each of its 𝑘 VNs, resulting in a communication

cost of 𝑘 𝑑
𝑘
= 𝑑 for this step.

(2) VNs→ VNs. Next, the 𝑘 VNs operated by an RN send a
model chunk of size 𝑑

𝑘
to 𝑟 other VNs, incurring a communi-

cation cost of 𝑘 𝑑
𝑘
𝑟 = 𝑑𝑟 .

(3) VNs→ RN. Finally, all 𝑟 VNs who received a chunk in (2)
forward these model chunks back to their associated RN.
This incurs the same communication cost as step (2): 𝑑𝑟 .

Therefore, the communication cost of Shatter is: 𝑑 + 2𝑑𝑟 .
The overhead of Shatter compared to D-PSGD, in number of

parameters sent, is as follows:

comm. cost Shatter
comm. cost D-PSGD =

𝑑 + 2𝑑𝑟
𝑑𝑟

= 2 + 1
𝑟

The communication cost of Shatter is between 2 and 2.5× that
of D-PSGD. We do not account for the case where 𝑟 = 1, as such a
communication graph would not be connected.

Number of Messages. We now analyze the total number of
messages sent in a single round, from the perspective of a single
RN. In a round of D-PSGD, a RN sends 𝑟 messages, one to each of
its neighbors. In a round of Shatter, an RN first sends a single
message to its 𝑘 VNs, VNs exchange 𝑘𝑟 messages and VNs finally
forward 𝑘𝑟 received messages back to their RN, resulting in a total
of 𝑘 + 2𝑘𝑟 messages sent. The overhead of Shatter compared to
D-PSGD, in number of messages sent, is as follows:

num. msgs. Shatter
num. msgs. D-PSGD =

𝑘 + 2𝑘𝑟
𝑟

= 2𝑘 + 𝑘
𝑟

The VNs in Shatter introduce a level of indirection for model
transfers, affecting the total communication time in each round.
While in D-PSGD models are directly exchanged between RNs,
Shatter routes model chunks through VNs, resulting in additional
communication latency. This latency becomes more pronounced if
VNs are geographically distant from their parent RNs. The exact
increase in latency depends on the underlying network infrastruc-
ture and bandwidth capabilities. However, we remark that the time
to convergence in DL is dominated by the gradient updates and the
training is not latency-critical. Furthermore, this increase in the
communication cost and number of messages is an upper bound
and can be reduced through optimization techniques such as having
VNs aggregate chunks before forwarding them to their RN.

Operational Costs. There are also operational costs involved
with hosting and operating VNs. Since the VNs only need to for-
ward messages and partial models, they can be hosted as light-
weight containers that do not require heavy computational re-
sources. Nonetheless, they require an active network connection
and sufficient memory to ensure correct operation.

6 EVALUATION

Our evaluation answers the following questions: (1) How does the
convergence and MIA resilience of Shatter evolve across training
rounds, compared to our baselines (Section 6.2)? (2) How resilient
is Shatter against the privacy attacks in DL (Section 6.3)? (3) How
does increasing the number of VNs affect the model convergence
and attack resilience (Section 6.4)? (4) What is the contribution of
each Shatter component to privacy and convergence (Section 6.5)?

6.1 Experimental Setup

Implementation and compute infrastructure. We implement
Shatter using the DecentralizePy framework [23] in approxi-
mately 4300 lines of Python 3.8.10, relying on PyTorch 2.1.1 [68]
to train and implement ML models1. Each node (RN and VN) is
executed on a separate process, responsible for executing tasks
independently of other nodes.

All our experiments are executed on AWS infrastructure, and our
compute infrastructure consists of 25 g5.2x large instances. Each
instance is equipped with one NVIDIA A10G Tensor Core GPU and
8 second-generation AMD EPYC 7R32 processors. Each instance
hosts between 2-4 RNs and 1-16 VNs for each experiment.

DL algorithm and baselines. Shatter uses EL as the underly-
ing learning algorithm as EL randomizes its communication topol-
ogy every round. As such, we compare the privacy guarantees
offered by Shatter against those of EL, i.e., in a setting without ad-
ditional privacy protection. While many privacy-preserving mech-
anisms are designed for FL, only a few are compatible with DL. We
use Muffliato as a baseline for privacy-preserving DL [17]. Muf-
fliato is a noise-based privacy-amplification mechanism in which
nodes inject local Gaussian noise into their model updates and then
conduct 10 gossiping rounds to average the model updates in each
training round. For Muffliato, we randomize the communication
topology in each gossiping round. While this results in 10× more
topology refreshes inMuffliato compared to EL and Shatter, we
consider this advantage as a fair comparison. For all experiments,
unless otherwise stated, we set the number of VNs per RN 𝑘 =

8 and generate a random regular graph with degree 𝑟 = 8 every
communication round. We assume that all nodes are online and
available throughout the training. Appendix E contains additional
experiments with node churn, i.e., intermittent node availabilities.

Privacy attacks. We evaluate Shatter against (i) Loss-based
MIA, (ii) GIA, and (iii) LA. MIA is a representative inference attack,
quantified using the negative of the loss values on the training
samples of a node and the test set of the given dataset [87]. Since
Shatter works with chunks of the model, LA measures how much
a VN links to the training distribution [51] by evaluating each
received model update and evaluating the loss on the training
1Source code available at https://github.com/sacs-epfl/shatter.
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sets of each node. For both MIA and LA, one requires the full
model to compute the loss. Therefore, in Shatter, the adversary
complements each chunk of the received model update with the
average model of the previous round to approximate the full model
before attacking it. The GIA over the sparsified model updates is
performed using the state-of-the-art ROG [92].

Learning tasks and hyperparameters. In our testbed, we use
three datasets: CIFAR-10 [50], Twitter Sent-140 [10, 31], and Movie-
Lens [34] for convergence, MIA, and LA. Additionally, we perform
GIA (ROG) on 1600 images from the ImageNet [19] validation set.

The CIFAR-10 dataset is a standard image classification task.
For CIFAR-10, we adopt a non-IID data partitioning scheme, as-
signing training images to 100 DL nodes with a Dirichlet distri-
bution. This is a common scheme to model data heterogeneity in
CML [18, 33, 39, 81]. This distribution is parameterized by 𝛼 that
controls the level of non-IIDness (higher values of 𝛼 result in evenly
balanced data distributions). For CIFAR-10, we use 𝛼 = 0.1, which
corresponds to a high non-IIDness. This simulates a setting where
the convergence is slower inDL and theMIA and LA adversary have
an advantage because the local distributions are dissimilar. This
task uses a ResNet-18 model (with ≈11.5 million parameters) [37].

Our second dataset is Twitter Sent-140, a sentiment classification
task containing tweets partitioned by users [10, 31]. We preprocess
the dataset such that each user has at least 24 tweets. All tweets have
been annotated with a score between 0 (negative) and 4 (positive).
We randomly assign the different authors behind the tweets to 50
DL nodes, a partitioning scheme that is also used in related work
on DL [23, 24]. For this task, we initialize a pre-trained bert-base-
uncased Transformer model (with ≈110 million parameters) [21]
from Hugging Face with a new final layer with 2 outputs. We then
fine-tune the full model on the Twitter Sent-140 dataset.

We also evaluate Shatter using a recommendation model based
on matrix factorization [49] on the MovieLens 100K dataset, com-
prising user ratings from 0.5 to 5 for several movies. This task
models a scenario where individual participants may wish to learn
from the movie preferences of other users with similar interests.
Like the Twitter Sent-140 task, we consider the multiple-user-one-
node setup where we randomly assign multiple users to a DL node.

Lastly, to present the vulnerability of DL and Shatter against
GIA, we instantiate 100 DL nodes, each with 16 images from the
ImageNet validation set. We use the LeNet model to perform one DL
training round. ROG is performed on the model updates exchanged
after the first training round. Since the reconstructed images are
the best after the first training round, we do not continue further
DL training and evaluate the strongest version of this attack.

We perform 1 epoch of training before exchanging models for
all convergence tasks and 5 epochs of training for the ImageNet
GIA. Learning rates were tuned on a grid of varying values. For
Muffliato, we comprehensively use two noise levels: (i) low: with
good convergence, which results in low privacy against MIA, and
(ii) high: with higher attack resilience to MIA, but at the cost of
model utility. Lower noise values present no privacy benefits against
EL, and higher noise values adversely affect convergence. More
details about the used datasets and hyperparameters can be found
in Appendix D. In summary, our experimental setup covers datasets

with differing tasks, data distributions, and model sizes, and the
hyperparameters were carefully tuned.

Metrics and reproducibility. All reported test accuracies are
top-1 accuracies obtained when evaluating the model on the respec-
tive test datasets. For MovieLens, we only present the RMSE-loss,
as it is not a classification task. To quantify the attack resilience
of Shatter and its baselines, we use the ROC-AUC metric when
experimenting with the MIA, representing the area-under-curve
when plotting the true positive rate against the false positive rate.
For the LA, we report the success rate in percentage, i.e., for each ad-
versary, the success rate is the percentage of correctly linked model
chunks out of the total attacked model chunks. As the attacks are
extremely computationally expensive, each RN across all baselines
randomly evaluates 8 received model updates for CIFAR-10 and
MovieLens, and 4 for the Twitter Sent-140 dataset every training
round. Finally, we report the LPIPS score when evaluating ROG, a
score between 0 and 1, which indicates the similarity between two
batches of images (more similar images correspond to lower LPIPS
scores). We run all experiments three times, using different seeds,
and present averaged results with confidence intervals.

6.2 Convergence and MIA Across Rounds

We first evaluate how the convergence and resilience against the
MIA evolve with the training for Shatter and the baselines for
all three datasets. Each RN operates 8 VNs, and we train until EL
convergence. An ideal algorithm would have a low MIA AUC and
a high test accuracy (or low test loss for MovieLens) close to EL
with no privacy-preserving solution.

Figure 5 shows the convergence (left) and MIA attack success
(right) for each dataset (row-wise). EL achieves 51.74%, 83.11%,
and 1.10 [RMSE] model utility for CIFAR-10, Twitter Sent-140, and
MovieLens, respectively. On the other hand, EL is vulnerable to the
loss-based MIA, reaching close to 89.7% AUC on CIFAR-10, 56.1%
AUC on Twitter, and 65.8% AUC on MovieLens respectively, where
the chance of a random guess is 50%. Muffliato (low) achieves
similar convergence to EL for all datasets but is also not very effec-
tive at reducing vulnerability against the MIA.Muffliato (high)
instead lowers the MIA vulnerability but at the cost of convergence,
finally reaching 2.61% lower test accuracy for Twitter Sent-140,
and 1.0 [RMSE] higher test loss for MovieLens (considering the
best values). For the CIFAR-10 dataset, convergence is so unstable
that there is no learning beyond 12 training rounds. In contrast,
Shatter consistently outperforms the baselines in terms of the
resilience to MIA while having no adverse impact on convergence
for Twitter Sent-140 and MovieLens, and positively raises the top-1
test accuracy by 3.21% for CIFAR-10. For a given iteration, Shat-
ter reduces MIA AUC (%) by 4.9-25.8% on CIFAR-10, 3.4-4.0% on
Twitter Sent-140, and 0.8-15.1% on MovieLens.

These experiments cover a range of settings, e.g., we find that
the extreme non-IIDness in CIFAR-10 adversely affectsMuffliato,
whereas it positively affects Shatter. Furthermore, the pre-training
in Twitter Sent-140 experiments makes it more challenging for the
adversary to perform a MIA as models become less personalized.
In CIFAR-10, Shatter has a higher vulnerability to MIA at the
start, decreasing sharply afterward. We notice the accuracy of the
models at this point is as good as a random guess (10%), and hence
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Figure 5: The test accuracy (↑ is better) and MIA AUC (↓ is
better) across training rounds for CIFAR-10 (top), Twitter

Sent-140 (middle) and the test loss (↓ is better) for MovieLens

(bottom), for EL, Shatter andMuffliato. An AUC of 50%

corresponds to an attacker randomly guessing.

training techniques like regularization can fix it. However, we do
not evaluate with regularization and show the worst case from the
attack’s perspective. Another seemingly unexpected behavior is the
higher vulnerability of Muffliato (high) against Muffliato (low)
for the MovieLens dataset. This can be explained by the loss curve
on the left, which clearly shows significantly worse generalization
for Muffliato (high) than Muffliato (low).

6.3 Privacy Guarantees of Individual Nodes

We now analyze the vulnerability of individual nodes to the MIA
and LA. Ideally, we aim for most nodes to have a low MIA AUC and
LA success. Figure 6 shows the CDF of victim nodes against the
average MIA AUC (left) and LA success (right) for the baselines. We
observe that, consistently across datasets, Shatter outperforms
Muffliato (low) and EL in defending against both attacks.Muf-
fliato (high) appears to beat Shatter on the Twitter Sent-140
dataset and appears to be a better defense against LA for CIFAR-10.
However, we need to keep in mind thatMuffliato (high) signifi-
cantly hurts convergence (see Figure 5).

LA also assesses the vulnerability of the real identities of the
nodes that can be leaked through their local data distributions, even
when the real identities and model updates are obfuscated. Shatter
preserves the privacy of the nodes by having near-zero linkability
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Figure 6: The distribution of MIA AUC (↓ is better) and attack

success of the LA across clients for CIFAR-10 (top), Twitter

Sent-140 (middle) and MovieLens (bottom) , for EL, Shatter

and Muffliato. An attack success of 2% for the LA corre-

sponds to an attacker randomly guessing on Twitter Sent-140

and 1% on other datasets.

for at least 70% across our experiments, up from only 7% nodes with
near-zero linkability in EL. Hence, Figure 6 (right) demonstrates
that just obfuscating identities, e.g., by using onion routing tech-
niques [32], would not defend against LA. While Muffliato (high)
is also decent in the defense against LA, this needs to be looked
at in conjunction with the convergence. To conclude, Shatter of-
fers individual clients better privacy protection compared to the
baselines and across a range of varying learning tasks.

6.4 Varying the Number of VNs

We next analyze the impact of an increased number of VNs on
convergence and resilience against our three privacy attacks. As
we increase the number of VNs per RN (𝑘), we keep the degree of
the topology constant (𝑟 = 6), consequently keeping the total bytes
transferred constant for Shatter. We establish the communication
and operational costs of Shatter in Section 5.3.

Convergence. To observe the impact of 𝑘 on convergence, we
run EL and Shatter with increasing values of 𝑘 for 300 training
rounds with the CIFAR-10 dataset. The convergence bar plot in Fig-
ure 7a shows the average test accuracy during a run for different
values of 𝑘 . EL achieves an average test accuracy of 51.7%, which
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Figure 7: The test accuracy (a, ↑ is better), MIA AUC (b, ↓ is better), attack success rate for LA (c, ↓ is better) on CIFAR-10, and

GIA LPIPS score (d, ↑ is better) on ImageNet for increasing values of 𝑘 (with 𝑘 = 1 corresponding to an EL setting).

increases to 53.2% with 𝑘 = 2. Further increasing 𝑘 positively affects
the test accuracy: increasing 𝑘 from 2 to 16 increases the attained
test accuracy from 53.2% to 55.3%. We attribute this increase in test
accuracy to the superior propagation and mixing of model chunks.
Furthermore, this increase in test accuracy and faster convergence
compensates for the increased communication cost of Shatter.

Attack resilience. Next, we compare the attack resilience of
Shatter with different values of 𝑘 against that of EL, for all three
privacy attacks. Figures 7b-d show the LPIPS score, AUC, and at-
tack success percentage for the MIA, LA, and GIA respectively, for
increasing values of 𝑘 . The values for a fixed 𝑘 are averaged across
clients and training rounds. Figure 7b shows that 𝑘 = 2 already de-
fends better against MIA and reduces the median AUC from 88% to
83%. Shatter with 𝑘 = 16 provides significant privacy guarantees,
showing a median AUC of only 58%. A similar trend is visible for
the LA, as shown in Figure 7c, where an attacker has a success rate
of 36.5% in EL and it decreases rapidly with an increase in 𝑘 . For
𝑘 = 16, a median attack success of merely 2.5% (and at most 4.5%)
is observed, underlining the superior privacy benefits of Shatter.
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(k=16)

LPIPS
Score 0.266 0.422 0.662 0.781 0.815

Figure 8: Selected reconstructed images using theGIA, for our

baselines and different numbers of VNs (𝑘). We also show the

average LPIPS scores (↑ is better) for all 1600 reconstructed

images for each setting at the bottom of the figure.
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Figure 9: Ablation study: convergence and resistance against

MIA and LA with different components of Shatter enabled.

We conduct the GIA on ImageNet when the network learns using
a LeNetmodel, using the experimental setup described in Section 6.1.
Four random images from a set of 1600 reconstructed images are
shown in Figure 8, with the original image in the left-most column
and the images for EL and Shatter for different values of 𝑘 in the
other columns. For each approach, we also show the average LPIPS
score [93] over all the images in Figure 7d. For EL, we observe
significant similarities between the original and reconstructed im-
ages with a low LPIPS score. For 𝑘 ≥ 4, the reconstructed images
increasingly become too blurry to visually obtain any meaningful
information, as evidenced by an increase in the LPIPS score. For
𝑘 = 16, we cannot identify any semantic features in the recon-
structed image with a 3.1× higher LPIPS score compared to EL.
Employing more VNs, e.g., increasing 𝑘 , thus results in additional
privacy. We discuss the choice of 𝑘 in more detail in Section 8.

6.5 Ablation Study

We now evaluate the effectiveness of the components of Shatter,
i.e., chunking, full sharing and virtualization, in terms of conver-
gence and resistance against the MIA and LA. Figure 9 shows the
performance of chunking, i.e., sharing one chunk with 1/8th of
model parameters and Shatter (full sharing + chunking) against
that of EL. We omit virtualization (unlinking identities) in this ex-
periment as it does not affect convergence. Furthermore, the privacy
benefits of chunking diminish without virtualization because an
attacker would trivially be able to put together two chunks received
from the same source. We observe that chunking improves privacy
w.r.t. both MIA and LA at the cost of accuracy. With only chunking,
the nodes reach 16.9 % lower accuracy points than EL and 19.8 %
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lower accuracy points than Shatter with 8 VNs. When compar-
ing Shatter and chunking for privacy, the lower attack success
for chunking is due to the restrictive learning rate. We tuned the
learning rate for optimal convergence and the optimal learning
rate for chunking is much lower than that of Shatter. This results
in smaller model updates with chunking as opposed to Shatter,
making MIA and LA more difficult to carry out. In summary, we
elucidate the contributions of the components of Shatter: chunk-
ing and virtualization bring privacy, and full sharing brings utility
without compromising the efficiency compared to EL.

7 RELATEDWORK

Trusted hardware. Trusted execution environments (TEE) cre-
ate secure environments on the processors to safeguard data and
calculations from untrusted administrative domains [71]. Systems
such as ShuffleFL [94], Flatee [61], and Papaya [42] use secure hard-
ware for private averaging to prevent the server from inspecting
model updates. GradSec [59] uses ARM TrustZone to prevent infer-
ence attacks in FL. ReX [22] uses Intel SGX for secure data sharing in
decentralized learning. While these systems effectively hide model
updates from the server operator or nodes, they require specialized
hardware that is not always available. Shatter, however, enhances
privacy without needing any specialized hardware.

Secure aggregation. Secure aggregation is a privacy-enhancing
method to securely share models using masks and has been de-
ployed in the context of FL [9, 29]. These masks are agreed upon
before training and cancel out upon aggregation. This scheme re-
quires interactivity and sometimes extensive coordination among
participants, requiring all nodes to apply masks, be connected and
available. Shatter avoids using cryptographic techniques and has
less strict requirements on coordination among nodes.

Differential privacy. Several differential privacy schemes ob-
tain provable privacy guarantees in DL [17, 54]. These works add
noise to model weights before sharing them with the neighbors.
While they provide strong theoretical privacy guarantees, we have
demonstrated that they often significantly deteriorate model utility.
Nevertheless, privacy-critical applications benefit from differential
privacy guarantees. In contrast, Shatter does not introduce such
noise and, therefore, avoids the negative effect on model utility.

Onion routing and VNs. The notion of VNs in Shatter some-
what resembles onion routing, which hides a sender’s identity by
routing traffic through intermediate nodes [32]. While onion rout-
ing techniques can be applied to DL, it would not defend against
MIA and GIA, and would be innocuous against LA (cf., Figure 7).
VNs were also used in P2P networks, e.g., to ensure load balancing
in DHTs [6]. On the other hand, VNs in Shatter exchange models
on behalf of RNs improving the privacy and accuracy of DL.

8 FINAL REMARKS

Shatter is a novel approach to privacy-preserving DL. It partitions
models into chunks and distributes them across a dynamic commu-
nication topology of virtual nodes that significantly enhances pri-
vacy by preventing adversaries from reconstructing complete mod-
els and from identifying the original nodes responsible for specific
contributions. We have theoretically and empirically demonstrated

the convergence of Shatter, its formal privacy guarantees, and
its resilience against three state-of-the-art privacy attacks across a
variety of learning tasks.

Choosing k. The number of VNs per RN, 𝑘 , is a free parameter
in Shatter. The appropriate value of 𝑘 in a deployment setting de-
pends on the specifications of the available infrastructures and the
sensitivity of the training data as the choice of 𝑘 directly impacts
privacy guarantees and overhead. While environments with pow-
erful infrastructures can use higher values of 𝑘 to enhance privacy,
a lower 𝑘 may be more appropriate in managing the overhead for
settings with limited computational resources. Additionally, highly
sensitive data benefits from a higher 𝑘 , even if this results in more
overhead. The choice of 𝑘 being highly domain- and application-
specific, our experiments show that 8 ≤ 𝑘 ≤ 16 strikes a reasonable
balance between privacy guarantees and overhead.

Shatter and differential privacy. Shatter protects the pri-
vacy of individual model updates shared in DL. However, the final
model may still leak some information. While this threat model is
widely adopted in related work [9, 29, 42], to obtain DP guaran-
tees for extra privacy on the final model, one may inject noise to
model parameters before chunking. This is, however, orthogonal to
Shatter and comes at the cost of utility.

Shatter and sparsification. The communication between
two VNs resembles random sparsification. Shatter leverages the
fact that it is more difficult to attack a partial set of parameters than
the full model. From the perspective of a single RN, Shatter still
disseminates as much information as DL (see Figure 10, Appendix B
for details). We remark that Shatter is compatible with sparsifi-
cation for improving communication efficiency. For instance, the
RN may still use the state-of-the-art sparsification schemes on the
trained model parameters and perform chunking only on the spar-
sified parameters. We believe such an analysis would be interesting
as a potential future avenue to generalize Shatter.

Active attacks. While this work focuses on a HbC threat model
with a passive adversary, some networks may contain active adver-
saries that deviate from the specified protocol, e.g., by modifying
model parameters or colluding with other nodes. A general defense
mechanism against active attacks is difficult to realize due to the
large design space of such attacks.

Nevertheless, the components of Shatter raise the bar to mount
particular active attacks. Firstly, Shatter randomizes the commu-
nication topology in each round, which makes it difficult for an
attacker to consistently target a specific set of nodes. The latter
is a requirement for the successful execution of many active at-
tacks [67]. Secondly, the chunking process involves dividing the
model into smaller parts (chunks) and distributing them among
VNs. Model chunking limits the exposure of any single part of the
model, thereby reducing the potential impact of an active attack.
Thanks to the randomization in Shatter, it is not guaranteed that
the chunks by an active attacker end up in the model of a partic-
ular victim. The combined effect of these components is that an
attacker’s ability to mount privacy attacks is significantly crippled.
The security of Shatter can be further extended with auxiliary
defense mechanisms to protect against advanced active and Sybil
attacks [17, 35, 91]. We aim to explore this in future work.
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A TABLE OF NOTATIONS

Notation Description

D-PSGD
N Set of all nodes
G Graph topology
E Edges (communication) between the nodes
𝐷𝑖 Local dataset of node 𝑖
𝜉𝑖 Mini-batch sampled from 𝐷𝑖

𝜃
(𝑡 )
𝑖

Local model of node 𝑖 in round 𝑡
𝑓𝑖 Loss function of node 𝑖
𝐻 Number of local training steps

Shatter
N Set of all RNs
𝑛 Number of RNs (= |N |)
𝑁𝑖 𝑖th RN
𝑘 Number of VNs per RN
𝑟 Number of neighbors of each VN
𝑑 Dimension of the parameter space of the models

𝜃
(𝑡 )
𝑖

model held by 𝑁𝑖 in round 𝑡
𝑣𝑖 (𝑠) 𝑠th VN of 𝑁𝑖 for all 𝑖 ∈ [𝑛] and 𝑠 ∈ [𝑘]
𝜃
(𝑡 )
𝑖 ,𝑠 chunk of 𝑁𝑖 ’s model held by 𝑣𝑖 (𝑠) in round 𝑡

𝜃
(𝑡 )
𝑖←𝑗

Part of 𝑁 𝑗 ’s model received by 𝑁𝑖 in round 𝑡
𝜃
(𝑡 )
𝑖↚𝑗

Part of 𝑁 𝑗 ’s model not received by 𝑁𝑖 in round 𝑡
G𝑡 Communication graph of the VNs in round 𝑡
V Set of all VNs
E𝑡 Edges (communication) between the VNs in round 𝑡

B THE D-PSGD ALGORITHM

We show in Algorithm 2 the standard D-PSGD procedure, from the
perspective of node 𝑖 . Figure 10 illustrates the differences between
D-PSGD, Sparsification and Shatter.

Algorithm2:TheD-PSGDprocedure, from the perspective
of node 𝑖 .
1 Initialize 𝜃 (0)

𝑖

2 for 𝑡 = 0, . . . ,𝑇 − 1 do

3 𝜃
(𝑡 ,0)
𝑖

← 𝜃
(𝑡 )
𝑖

4 for ℎ = 0, . . . ,𝐻 − 1 do

5 𝜉𝑖 ← mini-batch sampled from 𝐷𝑖

6 𝜃
(𝑡 ,ℎ+1)
𝑖

← 𝜃
(𝑡 ,ℎ)
𝑖

− 𝜂∇𝑓𝑖 (𝜃 (𝑡 ,ℎ)
𝑖

, 𝜉𝑖 )
7 Send 𝜃

(𝑡 ,𝐻 )
𝑖

to the neighbors in topology G
8 Receive 𝜃

(𝑡 ,𝐻 )
𝑗

from each neighbor 𝑗 in G
9 Aggregate the received models to produce 𝜃 (𝑡+1)

𝑖

10 return 𝜃
(𝑇 )
𝑖
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Table 1: Summary of datasets used for convergence evaluation. For each dataset, the tuned values of learning rate (𝜂), batch size

(B), the number of training and testing samples, total model parameters and noise-levels forMuffliato (𝜎) are presented.

Task Dataset Model 𝜂 B Training Testing Total Muffliato Noise (𝜎)

Samples Samples Parameters Low Medium High

Image Classification CIFAR-10 ResNet-18 0.050 32 50 000 10 000 11 494 592 0.025 0.050 0.100
Sentiment Analysis Twitter Sent-140 BERT 0.005 32 32 299 8484 109 483 778 0.009 - 0.015
Recommendation MovieLens Matrix Factorization 0.075 32 70 000 30 000 206 680 0.025 - 0.250

SparsificationDecentralized Learning Shatter
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V

<latexit sha1_base64="FC06GaTf0KYgTE/NlLBYB5Rd37E=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZqtPqlsltx5yCrxMtJGXLU+6Wv3iBmaYTSMEG17npuYvyMKsOZwGmxl2pMKBvTIXYtlTRC7WfzQ6fk3CoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m6INwVt+eZW0LitetVJtXJVrt3kcBTiFM7gAD66hBvdQhyYwQHiGV3hzHp0X5935WLSuOfnMCfyB8/kDtkOM5Q==</latexit>
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Figure 10: Distinguishing Shatter from DL and Sparsification.

C ALTERNATIVE MODEL CHUNKING

STRATEGY

RNs in Shatter break down their local model into smaller chunks
that are propagated by their VNs. The strategy for model chunk-
ing can affect both the privacy guarantees and the convergence
of the training process and should therefore be carefully chosen.
As discussed in Section 4.2, each RN randomly samples weights
from its local model, without replacement. Furthermore, all RNs
create chunks with the same indices. We acknowledge that other
chunking strategies are possible; we discuss a few alternative model
chunking strategies and analyze their trade-offs in terms of privacy
and convergence.

1) Linear chunking. With linear chunking, the model parame-
ters are flattened to a one-dimensional array of weights and linearly
partitioned into 𝑘 chunks. Thus, the first 1

𝑘
parameters are given

to the first VN, the next 1
𝑘
parameters to the second VN etc. How-

ever, we experimentally found this strategy to violate privacy since
different model chunks carry different amounts of information, i.e.,
they contain information from different layers. For example, the
final chunk, containing the weights associated with the final layer,
can leak substantial gradient information [80, 95].

2) Random weight sampling (with replacement). Another
strategy involves a RN sampling 1

𝑘
random weights, with replace-

ment. With this strategy, a RN might send the same weight to
multiple of its VNs during a round. However, this risks an adver-
sarial RN inferring that two model chunks originate from the same
RN. Specifically, a RN receiving two model chunks that share a
common weight at the same position can now, with a high likeli-
hood, conclude that those chunks originate from the local model of
the same RN. Furthermore, this strategy might result in a situation

where important weights are not sampled at all during a particular
training round, which negatively affects performance.

3) Dynamic chunking. While we stick to static chunking in
Shatter, another approach would be to change the parameter
assignments for each VN over time. While combining this with a
random chunking strategy increases the stochasticity of the system,
this can potentially be worse for privacy closer to convergence. The
parameters do not change much closer to convergence. Therefore,
an adversary may continue to listen to the same VN across rounds
sending different sets of parameters and may potentially collect all
the model parameters of RN. Combining this with the fact that GIA
is highly effective close to convergence [67], we may end up with
the privacy vulnerability of EL.

D EXPERIMENTAL SETUP DETAILS

Table 1 provides a summary of the datasets along with the hyper-
parameters used in our testbed. Sentiment analysis over Twitter
Sent-140 is a fine-tuning task, whereas we train the models from
scratch in the other tasks. In addition to these datasets, we use
ImageNet validation set for the GIA using ROG. Two nodes are
assigned 16 images each and they train with the batch size 𝑏 = 16
for 5 epochs using the LeNet model architecture. We perturb each
node’s initial model randomly for increased stochasticity.

E EXPERIMENTS WITH NODE DROPOUTS

We present the convergence of Shatter in the setting where DL
nodes have intermittent connectivity.We simulate different dropout
rates for DL nodes and RNs in Shatter. In each round, nodes decide
to participate or not based on the dropout rate. In addition to the
dropout rate, we set a dropout correlation factor of 10%, i.e., a node
is 10% more likely to drop out if it did not participate in the last
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Figure 11: Accuracy achieved after 300 rounds at different

dropout rates.

round. When a node does not participate in a round, it does not
perform training, sharing, and aggregation. When a RN in Shatter
drops out, we assume that its VNs also drop out. While we assumed
an 𝑟 −𝑟𝑒𝑔𝑢𝑙𝑎𝑟 topology in our system model (Section 4.1), this does
not hold when nodes have intermittent availabilities. We assume
that the communication topology refreshes are agnostic of the
availabilities of the nodes.

Figure 11 shows the highest test accuracy reached after 300
rounds of CIFAR-10 training for varying dropout rates. In Shatter,
we assume 𝑘 = 8, i.e., 8 VNs per RN. Shatter consistently performs
better than EL even with the dropout rate of as high as 75%. Shat-
ter with a 10% dropout rate performs even better than EL without
any node dropouts. We notice a drop in the accuracy as the drop
rate goes up for both Shatter and EL. This is expected as fewer gra-
dients are computed and fewer parameters are aggregated because
some nodes are unavailable for training and aggregation in each
round. These results demonstrate that Shatter is not hampered
more by node dropouts when compared to the state-of-the-art DL
baseline of EL. Furthermore, the achieved model utility in Shatter
is not significantly affected for topologies slightly deviating from
𝑟 -regular as seen from the results with the dropout rate of 10%.

F POSTPONED PROOFS

F.1 Proof of Theorem 1

We start by proving the following Lemma.

Lemma 5. Let C𝑡 : R𝑑×𝑛 → R𝑑×𝑛 be the operator defined as

∀𝜃 = (𝜃𝑖 )𝑖∈[𝑛] ∈ R𝑑×𝑛 , C𝑡 (𝜃 )𝑖 =
𝑘∑︁
𝑠=1

1
𝑟

∑︁
𝑤∈V:{𝑣𝑖 (𝑠 ) ,𝑤}∈E𝑡

𝜃𝑤 ,

where for 𝑤 = 𝑣𝑖 (𝑠) a virtual node of 𝑁𝑖 , 𝜃𝑤 ∈ R𝑑 contains the
subset of coordinates of 𝜃𝑖 associated to the model chunks of 𝑣𝑖 (𝑠).
We have, for all 𝜃 = (𝜃𝑖 )𝑖∈[𝑛] ∈ R𝑑×𝑛 :

1
𝑛

𝑛∑︁
𝑖=1
C𝑡 (𝜃 )𝑖 = 𝜃 , (1)

E

[
1
𝑛

𝑛∑︁
𝑖=1

C𝑡 (𝜃 )𝑖 − 𝜃2
]
≤ 𝜌

𝑛

𝑛∑︁
𝑖=1

𝜃𝑖 − 𝜃2 , (2)

where 𝜃 = 1
𝑛

∑𝑛
𝑖=1 𝜃𝑖 and

𝜌 =
𝑛𝑘

𝑟 (𝑛𝑘 − 1)

(
1 + 𝑘 − 𝑟

𝑛𝑘 − 3 +
(𝑘 − 1) (𝑟 − 1)
(𝑛𝑘 − 2) (𝑛𝑘 − 3)

)
. (3)

Proof of Lemma 5. Let 𝜃 ∈ R𝑑×𝑛 and ℓ ∈ [𝑑]. For the first part
of the lemma, we have:

1
𝑛

𝑛∑︁
𝑖=1
C𝑡 (𝜃 )𝑖 = 1

𝑛

𝑛∑︁
𝑖=1

𝑘∑︁
𝑠=1

1
𝑟

∑︁
𝑤∈V:{𝑣𝑖 (𝑠 ) ,𝑤}∈E𝑡

𝜃𝑤

=
1
𝑛

𝑛∑︁
𝑖=1

𝑘∑︁
𝑠=1

1
𝑟

∑︁
𝑗∈[𝑛],𝑠′∈[𝑘 ]:{𝑣𝑖 (𝑠 ) ,𝑣𝑗 (𝑠′ ) }∈E𝑡

𝜃𝑣𝑗 (𝑠′ )

=
1
𝑛

𝑛∑︁
𝑗=1

𝑘∑︁
𝑠′=1

1
𝑟

∑︁
𝑖∈[𝑛],𝑠∈[𝑘 ]:{𝑣𝑖 (𝑠 ) ,𝑣𝑗 (𝑠 ) }∈E𝑡

𝜃𝑣𝑗 (𝑠′ )

=
1
𝑛

𝑛∑︁
𝑗=1

𝑘∑︁
𝑠′=1

𝜃𝑣𝑗 (𝑠′ )
1
𝑟

∑︁
𝑖∈[𝑛],𝑠∈[𝑘 ]:{𝑣𝑖 (𝑠 ) ,𝑣𝑗 (𝑠 ) }∈E𝑡

=
1
𝑛

𝑛∑︁
𝑗=1

𝑘∑︁
𝑠′=1

𝜃𝑣𝑗 (𝑠′ ) =
1
𝑛

𝑛∑︁
𝑗=1

𝜃 𝑗 = 𝜃 (ℓ)

since ∀ 𝑗 ∈ [𝑛], 𝑠′ ∈ [𝑘] we have
∑
𝑖∈[𝑛],𝑠∈[𝑘 ]:{𝑣𝑖 (𝑠 ) ,𝑣𝑗 (𝑠 ) }∈E𝑡 =

degree(𝑣 𝑗 (𝑠′)) = 𝑟 .
For the second part, we can assume without loss of generality

that 𝜃 = 0, since this quantity is preserved by C𝑡 . In that case,

E

[
1
𝑛

𝑛∑︁
𝑖=1

C𝑡 (𝜃 )𝑖 − 𝜃2
]
=

1
𝑛

𝑛∑︁
𝑖=1

𝑑∑︁
ℓ=1
E

[(C𝑡 (𝜃 )𝑖 (ℓ))2] .

Let ℓ ∈ [𝑑] be fixed. For all 𝑖 ∈ [𝑛], let 𝑣𝑖 (𝑠ℓ ) be the chunk that
includes coordinate ℓ of model chunks, for some 𝑠ℓ ∈ [𝑘] (without
loss of generality, we can assume that this 𝑠ℓ is the same for all 𝑖).
We have:

E
[C𝑡 (𝜃 )𝑖 (ℓ)2] = E ©«

1
𝑟

𝑛∑︁
𝑠∈[𝑘 ],𝑗∈[𝑛]:{𝑣𝑖 (𝑠 ) ,𝑣𝑗 (𝑠ℓ ) }∈E𝑡

𝜃 𝑗 (ℓ)ª®¬
2

=
1
𝑟2

∑︁
𝑗 ,𝑗 ′∈[𝑛]

∑︁
𝑠 ,𝑠′∈[𝑘 ]

𝜃 𝑗 (ℓ)𝜃 𝑗 ′ (ℓ)

× P ({𝑣 𝑗 (𝑠ℓ ), 𝑣𝑖 (𝑠)}, {𝑣 𝑗 ′ (𝑠ℓ ), 𝑣𝑖 (𝑠′)} ∈ E𝑡 ) .

For 𝑗 = 𝑗 ′ and 𝑠 = 𝑠′,

P
({𝑣 𝑗 (𝑠ℓ ), 𝑣𝑖 (𝑠)}, {𝑣 𝑗 ′ (𝑠ℓ ), 𝑣𝑖 (𝑠′)} ∈ E𝑡 )

= P
({𝑣 𝑗 (𝑠ℓ ), 𝑣𝑖 (𝑠)} ∈ E𝑡 )

=
𝑟

𝑛𝑘 − 1 ,

which is the probability for a given edge of the virtual nodes graph
to be in E𝑡 , a graph sampled uniformly at random from all 𝑟−regular
graphs. Let 𝑗 , 𝑗 ′ ∈ [𝑛] \ {𝑖} and 𝑠 , 𝑠′ ∈ [𝑘] \ {𝑠ℓ }. If 𝑗 = 𝑗 ′ but 𝑠 ≠ 𝑠′,

P
({𝑣 𝑗 (𝑠ℓ ), 𝑣𝑖 (𝑠)}, {𝑣 𝑗 ′ (𝑠ℓ ), 𝑣𝑖 (𝑠′)} ∈ E𝑡 )

= P
({𝑣 𝑗 (𝑠ℓ ), 𝑣𝑖 (𝑠)} ∈ E𝑡 ��{𝑣 𝑗 (𝑠ℓ ), 𝑣𝑖 (𝑠′)} ∈ E𝑡 ) × 𝑟

𝑛𝑘 − 1 ,

and we thus need to compute P
({𝑣 ,𝑤} ∈ E𝑡

��{𝑣 ,𝑢} ∈ E𝑡
)
, for vir-

tual nodes 𝑢, 𝑣 ,𝑤 such that 𝑢 ≠ 𝑤 . For all𝑤 ,𝑤 ′ ≠ 𝑢, by symmetry,
we have P

({𝑣 ,𝑤} ∈ E𝑡
��{𝑣 ,𝑢} ∈ E𝑡

)
= P

({𝑣 ,𝑤 ′} ∈ E𝑡
��{𝑣 ,𝑢} ∈ E𝑡

)
.

Then,

𝑟 = E
[
degree(𝑣)

��{𝑣 ,𝑢} ∈ E𝑡
]
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1 +
∑︁

𝑤′≠𝑢,𝑣
P

({𝑣 ,𝑤 ′} ∈ E𝑡
��{𝑣 ,𝑢} ∈ E𝑡

)
1 + (𝑛𝑘 − 2)P ({𝑣 ,𝑤} ∈ E𝑡

��{𝑣 ,𝑢} ∈ E𝑡
)

.

Thus,

P
({𝑣 ,𝑤} ∈ E𝑡

��{𝑣 ,𝑢} ∈ E𝑡
)
=

𝑟 − 1
𝑛𝑘 − 2 .

By symmetry, we obtain the same result for 𝑗 ≠ 𝑗 ′, 𝑠 ≠ 𝑠′. Fi-
nally, we need to handle the case 𝑗 ≠ 𝑗 ′ and 𝑠 ≠ 𝑠′. This amounts
to computing P

({𝑣 ,𝑤} ∈ E𝑡
��{𝑣 ′,𝑤 ′} ∈ E𝑡 ) for four virtual nodes

𝑣 , 𝑣 ′,𝑤 ,𝑤 ′ that are all different. We have:

𝑟 = E
[
degree(𝑣)

��{𝑣 ′,𝑤 ′} ∈ E𝑡 ]
= (𝑛𝑘 − 3)P ({𝑣 ,𝑤} ∈ E𝑡

��{𝑣 ′,𝑤 ′} ∈ E𝑡 )
+ 2P

({𝑣 , 𝑣 ′} ∈ E𝑡
��{𝑣 ′,𝑤 ′} ∈ E𝑡 ) .

From what we have already done, P
({𝑣 , 𝑣 ′} ∈ E𝑡

��{𝑣 ′,𝑤 ′} ∈ E𝑡 ) =
𝑟−1
𝑛𝑘−2 , leading to:

P
({𝑣 ,𝑤} ∈ E𝑡

��{𝑣 ′,𝑤 ′} ∈ E𝑡 ) = 𝑟 − 2 − 𝑟−1
𝑛𝑘−2

𝑛𝑘 − 3 .

Thus,

E
[C𝑡 (𝜃 )𝑖 (ℓ)2] = 1

𝑟 (𝑛𝑘 − 1)
∑︁

𝑗∈[𝑛],𝑠∈[𝑘 ]
𝜃 𝑗 (ℓ)2

+ 1
𝑟 (𝑛𝑘 − 1)

∑︁
𝑗∈[𝑛],𝑠≠𝑠′∈[𝑘 ]

𝜃 𝑗 (ℓ)2 𝑟 − 1
𝑛𝑘 − 2

+ 1
𝑟 (𝑛𝑘 − 1)

∑︁
𝑗≠𝑗 ′∈[𝑛],𝑠∈[𝑘 ]

𝜃 𝑗 (ℓ)𝜃 𝑗 ′ (ℓ) 𝑟 − 1
𝑛𝑘 − 2

+ 1
𝑟 (𝑛𝑘 − 1)

∑︁
𝑗≠𝑗 ′∈[𝑛],𝑠≠𝑠′∈[𝑘 ]

𝜃 𝑗 (ℓ)𝜃 𝑗 ′ (ℓ)
𝑟 − 2 − 𝑟−1

𝑛𝑘−2
𝑛𝑘 − 3

=
𝑘

𝑟 (𝑛𝑘 − 1)

(
1 + (𝑘 − 1) (𝑟 − 1)

(𝑛𝑘 − 2)

) ∑︁
𝑗∈[𝑛]

𝜃 𝑗 (ℓ)2

+ 𝑘

𝑟 (𝑛𝑘 − 1)
𝑟 − 1
𝑛𝑘 − 2

∑︁
𝑗≠𝑗 ′∈[𝑛]

𝜃 𝑗 (ℓ)𝜃 𝑗 ′ (ℓ)

+ 𝑘 (𝑘 − 1)
𝑟 (𝑛𝑘 − 1)

𝑟 − 2 − 𝑟−1
𝑛𝑘−2

𝑛𝑘 − 3
∑︁

𝑗≠𝑗 ′∈[𝑛]
𝜃 𝑗 (ℓ)𝜃 𝑗 ′ (ℓ) .

Then, ∑︁
𝑗≠𝑗 ′∈[𝑛]

𝜃 𝑗 (ℓ)𝜃 𝑗 ′ (ℓ) = ©«
∑︁
𝑗∈[𝑛]

𝜃 𝑗 (ℓ)ª®¬
2

−
∑︁
𝑗∈[𝑛]

𝜃 𝑗 (ℓ)2

= −
∑︁
𝑗∈[𝑛]

𝜃 𝑗 (ℓ)2 ,

leading to:

E
[C𝑡 (𝜃 )𝑖 (ℓ)2] = 𝜌

𝑛

∑︁
𝑗∈[𝑛]

𝜃 𝑗 (ℓ)2 ,

where

𝜌 =
𝑛𝑘

𝑟 (𝑛𝑘 − 1)

(
1 + (𝑘 − 2) (𝑟 − 1)

𝑛𝑘 − 2 −
(𝑘 − 1) (𝑟 − 2 − 𝑟−1

𝑛𝑘−2 )
𝑛𝑘 − 3

)
,

that satisfies

𝜌 ≤ 𝑛𝑘

𝑟 (𝑛𝑘 − 1)

(
1 + 𝑘 − 𝑟

𝑛𝑘 − 3 +
(𝑘 − 1) (𝑟 − 1)
(𝑛𝑘 − 2) (𝑛𝑘 − 3)

)
.

Importantly, the inequality in Equation (2) for 𝜌 as in Equation (3)
is almost tight, up to lower order terms in the expression of 𝜌 .

Using this and adapting existing proofs for decentralized SGD
with changing topologies and local updates [28, 46] we enable
ourself to prove the main result of Theorem 1 to derive the formal
convergence guarantees for Shatter.

Proof of Theorem 1. The proof is based on the proofs of [46,
Theorem 2] and [28, Theorem 4.2]: thanks to their unified analyses,
we only need to prove that their assumptions are verified for our
algorithm. Our regularity assumptions are the same as theirs, we
only need to satisfy the ergodic mixing assumption ([46, Assump-
tion 4] or [28, Assumption 2]). For𝑊𝑘 ≡ C𝑘/𝐻 if 𝑘 ≡ 0[𝐻 ] and
𝑊𝑘 = 𝐼𝑛 otherwise, we recover their formalism, and [46, Assump-
tion 4] is verified for 𝜏 = 𝐻 and 𝑝 = 1 − 𝜌 . However, the proofs
of [46, Theorem 2] and [28, Theorem 4.2] require𝑊𝑘 to be gossip
matrices: this is not the case for our operators C𝑡 . Still, C𝑡 can in
fact be seen as gossip matrices on the set of virtual nodes, and the
only two properties required to prove [46, Theorem 2] and [28,
Theorem 4.2] are that C𝑡 conserves the mean, and the contraction
proved in Lemma 5. □

F.2 Proof of Theorem 2

Proof. For notational convenience, let us define the following:

Definition F.1 (Distance between models). Let 𝜎 : R ↦→ {0, 1} de-
note the discrete metric, i.e., ∀𝑧, 𝑧′ ∈ R, 𝜎 (𝑧, 𝑧′) =

{
0, if 𝑧 = 𝑧′,
1, otherwise

.

Then, for a pair of models 𝜃 ,𝜃 ′ ∈ R𝑑 , let the distance between them

be 𝛿 (𝜃 ,𝜃 ′) such that 𝛿 (𝜃 ,𝜃 ′) =
𝑑∑

𝑝=1
𝜎 (𝜃 (𝑝),𝜃 ′ (𝑝)).

We note that 𝛿
(
𝜃
(𝑡 )
𝑗

,𝜃 (𝑡 )
𝑖←𝑗

)
=

���𝜃 (𝑡 )𝑖↚𝑗

���. Let us fix RNs 𝑁𝑖 and 𝑁 𝑗

where 𝑖 , 𝑗 ∈ [𝑛] and 𝑖 ≠ 𝑗 . Assuming that each VN has a degree of
𝑟 , when there are 𝑘 VNs per RN, 𝛿

(
𝜃
(𝑡 )
𝑗

,𝜃 (𝑡 )
𝑖←𝑗

)
= 0 can occur only

when all 𝑘 VNs of 𝑁 𝑗 independently communicate with at least one
of 𝑘 VNs of 𝑁𝑖 in the given communication round. Therefore, we
have:

P
[
𝛿

(
𝜃
(𝑡 )
𝑗

,𝜃 (𝑡 )
𝑖←𝑗

)
= 0

]
=

(
1 −

(
1 − 𝑟

𝑛𝑘 − 1

)𝑘 )𝑘
In order to prove the desired result, we need to show:(

1 −
(
1 − 𝑟

𝑛(𝑘 + 1) − 1

)𝑘+1)𝑘+1
≤

(
1 −

(
1 − 𝑟

𝑛𝑘 − 1

)𝑘 )𝑘
(4)

In order to show (4), we will first show(
1 − 𝑟

𝑛𝑘 − 1

)𝑘
≤

(
1 − 𝑟

𝑛(𝑘 + 1) − 1

)𝑘+1
(5)
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To this, we define an auxiliary function 𝐹 : [1,∞) ↦→ R such that
𝐹 (𝑥) = (

1 − 𝑟
𝑛𝑥−1

)𝑥 . Hence, for (4) to hold, it suffices to show that
𝐹 (.) is a non-decreasing function of 𝑥 . In other words, for every
𝑥 ∈ [1,∞), we wish to show:

𝑑

𝑑𝑥
𝐹 (𝑥) ≥ 0

⇐⇒
(
𝑛𝑥 − 1 − 𝑟
𝑛𝑥 − 1

)𝑥 (
𝑛𝑟𝑥

(𝑛𝑥 − 1) (𝑛𝑥 − 𝑟 − 1)

+ ln
(
𝑛𝑥 − 1 − 𝑟
𝑛𝑥 − 1

))
≥ 0

Noting that
(
1 − 𝑟

𝑛𝑥−1
)𝑥

> 0, it suffices to show:

𝑛𝑟𝑥

(𝑛𝑥 − 1) (𝑛𝑥 − 𝑟 − 1) + ln
(
1 − 𝑟

𝑛𝑥 − 1

)
≥ 0

⇐⇒ 𝑛𝑟𝑥

(𝑛𝑥 − 1) (𝑛𝑥 − 𝑟 − 1) − ln
(

𝑛𝑥 − 1
𝑛𝑥 − 𝑟 − 1

)
≥ 0

⇐⇒ 𝑛𝑟𝑥

(𝑛𝑥 − 1) (𝑛𝑥 − 𝑟 − 1) ≥ ln
(

𝑛𝑥 − 1
𝑛𝑥 − 𝑟 − 1

)
(6)

Recalling that 𝑖) ln(𝑧) ≤ 𝑧 − 1 ∀𝑧 ≥ 0, 𝑖𝑖) 𝑛 > 1, 𝑛 > 1, and 𝑖𝑖𝑖)
𝑟 < 𝑛𝑥 − 1, we get:

ln
(

𝑛𝑥 − 1
𝑛𝑥 − 𝑟 − 1

)
≤ 𝑛𝑥 − 1

𝑛𝑥 − 𝑟 − 1 − 1 =
𝑟

𝑛𝑥 − 𝑟 − 1 (7)

Thus, incorporating (7) into (6), it suffices to show that:
𝑛𝑟𝑥

(𝑛𝑥 − 1) (𝑛𝑥 − 𝑟 − 1) ≥
𝑟

𝑛𝑥 − 𝑟 − 1
⇐⇒ 𝑛𝑥

𝑛𝑥 − 1 ≥ 1, which trivially holds.

Hence, we establish that:(
1 − 𝑟

𝑛𝑘 − 1

)𝑘
≤

(
1 − 𝑟

𝑛(𝑘 + 1) − 1

)𝑘+1
=⇒ 1 −

(
1 − 𝑟

𝑛(𝑘 + 1) − 1

)𝑘+1
≤ 1 −

(
1 − 𝑟

𝑛𝑘 − 1

)𝑘
=⇒

(
1 −

(
1 − 𝑟

𝑛(𝑘 + 1) − 1

)𝑘+1)𝑘
≤

(
1 −

(
1 − 𝑟

𝑛𝑘 − 1

)𝑘 )𝑘
(8)

But 1 −
(
1 − 𝑟

𝑛 (𝑘+1)−1

)𝑘+1
≤ 1 implies:(

1 −
(
1 − 𝑟

𝑛(𝑘 + 1) − 1

)𝑘+1)𝑘+1
≤

(
1 −

(
1 − 𝑟

𝑛(𝑘 + 1) − 1

)𝑘+1)𝑘
(9)

Therefore, combining (8) and (9), we obtain (4), as desired. □

F.3 Proof of Theorem 3

Proof. Setting 𝑆 as the random variable denoting the number
of VNs of 𝑁 𝑗 that connect with at least one of the VNs of 𝑁𝑖 (i.e.,
the VNs of 𝑁 𝑗 that are responsible for sharing the corresponding
chunks of 𝑁 𝑗 ’s model they hold with 𝑁𝑖 ) and, hence, noting that
the number of parameters of 𝑁 𝑗 ’s model that are shared with 𝑁𝑖 is
𝑑
𝑘
𝑆 , we essentially need to show that E

[
𝛿

(
𝜃
(𝑡 )
𝑗

,𝜃 (𝑡 )
𝑖←𝑗

)]
= E

[
𝑑
𝑘
𝑆

]
is a decreasing function of 𝑘 , where 𝛿 (.) is same as has been defined
in Definition F.1. By the law of the unconscious statistician, we have:

E

[
𝑑𝑆

𝑘

]
=

𝑘∑︁
𝑠=0

𝑑𝑠

𝑘
P [𝑆 = 𝑠]

=

𝑘∑︁
𝑠=0

𝑑𝑠

𝑘

(
𝑘

𝑠

) (
1 − (1 − 𝑝)𝑘

)𝑠
(1 − 𝑝)𝑘 (𝑘−𝑠 )[

where 𝑝 =
𝑟

𝑛𝑘 − 1

]
=
𝑑

𝑘

𝑘∑︁
𝑠=0

𝑠

(
𝑘

𝑠

) (
1 − (1 − 𝑝)𝑘

)𝑠
(1 − 𝑝)𝑘 (𝑘−𝑠 )

=
𝑑

𝑘
E𝑋∼Bin(𝑘 ,𝜋𝑘 ) (𝑋 )[

where 𝜋𝑘 = 1 −
(
1 − 𝑟

𝑛𝑘 − 1

)𝑘 ]
=
𝑑

𝑘
𝑘𝜋𝑘 = 𝑑

(
1 −

(
1 − 𝑟

𝑛𝑘 − 1

)𝑘 )
(10)

By (8) in Theorem 2, we know that 𝜋𝑘 = 1 −
(
1 − 𝑟

𝑛𝑘−1

)𝑘
is a

decreasing function of𝑘 . Hence, for a fixed𝑛,𝑑 , and 𝑟 ,E
[
𝑑𝑆
𝑘

]
= 𝑑𝜋𝑘

is a decreasing function of 𝑘 . □

F.4 Proof of Theorem 4

Definition F.2 (Mutual information[72]). Let (𝑋 ,𝑌 ) be a pair
of random variables defined over the discrete space X × Y such
that 𝑝𝑋𝑌 is the joint PMF of 𝑋 and 𝑌 , 𝑝𝑋 and 𝑝𝑌 are the cor-
responding marginal PMFs, and 𝑝𝑋 |𝑌 is the conditional proba-
bility of 𝑋 given 𝑌 . Then the (Shannon) entropy of 𝑋 , 𝐻 (𝑋 ), is
defined as 𝐻 (𝑋 ) = − ∑

𝑥∈X
𝑝𝑋 (𝑥) log𝑝𝑋 (𝑥). The residual entropy

of 𝑋 given 𝑌 is defined as 𝐻 (𝑋 |𝑌 ) = ∑
𝑦∈Y

𝑝𝑌 (𝑦)𝐻 (𝑋 |𝑌 = 𝑦) =
− ∑

𝑦∈Y
𝑝𝑌 (𝑦)

∑
𝑥∈X

𝑝𝑋 |𝑌𝑝 (𝑥 |𝑦) log𝑝𝑋 |𝑌 (𝑥 |𝑦), and, finally, the MI is

given by:

𝐼 (𝑋 ;𝑌 ) = 𝐻 (𝑋 ) − 𝐻 (𝑋 |𝑌 ) =
∑︁
𝑥∈X

∑︁
𝑦∈Y

𝑝𝑋𝑌 (𝑥 ,𝑦) ln 𝑝𝑋𝑌 (𝑥 ,𝑦)
𝑝𝑋 (𝑥)𝑝𝑌 (𝑦)

Proof. Assumption 1 implies that 𝑋 ∼ N
(
𝝁 (𝑡 )
𝑋𝑖 𝑗

, Σ(𝑡 )
𝑋𝑖 𝑗

)
and 𝑌 ∼

N
(
𝝁 (𝑡 )
𝑌𝑖 𝑗

, Σ(𝑡 )
𝑌𝑖 𝑗

)
, where 𝝁 (𝑡 ) =

(
𝝁 (𝑡 )
𝑋𝑖 𝑗

, 𝝁 (𝑡 )
𝑌𝑖 𝑗

)T
. Hence,

𝐼
(
𝑋𝑖 𝑗 ;𝑌𝑖 𝑗

)
= 𝐷KL (𝑝 (𝑋 ,𝑌 ) | | 𝑝 (𝑋 )𝑝 (𝑌 ))

= 𝐷KL
(
N

(
𝝁 (𝑡 )
𝑗

, Σ(𝑡 )
𝑗

)
| | N

(
�̂� (𝑡 )
𝑗

, Σ̂(𝑡 )
𝑗

))
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where �̂� (𝑡 )𝑗 = 𝝁 (𝑡 )
𝑗

, Σ̂(𝑡 )
𝑗

=
©«
Σ
(𝑡 )
𝑋𝑖 𝑗

0

0 Σ
(𝑡 )
𝑌𝑖 𝑗

ª®¬


=
1
2 ln

©«
det

(
Σ
(𝑡 )
𝑋𝑖 𝑗

)
det

(
Σ
(𝑡 )
𝑌𝑖 𝑗

)
det

(
Σ
(𝑡 )
𝑗

) ª®®¬
=

1
2 ln

©«
det

(
Σ
(𝑡 )
𝑋𝑖 𝑗

)
det

(
Σ
(𝑡 )
𝑋𝑖 𝑗
− Σ(𝑡 )

𝑋𝑖 𝑗𝑌𝑖 𝑗
Σ
(𝑡 )−1
𝑌𝑖 𝑗

Σ
(𝑡 )
𝑌𝑖 𝑗𝑋𝑖 𝑗

) ª®®¬ (11)

[
∵ det

(
Σ
(𝑡 )
𝑗

)
= det

(
Σ
(𝑡 )
𝑌𝑖 𝑗

)
det

(
Σ
(𝑡 )
𝑋𝑖 𝑗
− Σ(𝑡 )

𝑋𝑖 𝑗𝑌𝑖 𝑗
Σ
(𝑡 )−1
𝑌𝑖 𝑗

Σ
(𝑡 )
𝑌𝑖 𝑗𝑋𝑖 𝑗

)]
RecallingAssumption 2, byHadamard’s theorem on determinants [36,
84], we note that

det
(
Σ
(𝑡 )
𝑋𝑖 𝑗

)
≤ 𝐵𝑑 (𝑡 )𝑑 (𝑡)𝑑 (𝑡 )/2 (12)

Moreover, observing that Σ(𝑡 )
𝑋𝑖 𝑗
− Σ(𝑡 )

𝑋𝑖 𝑗𝑌𝑖 𝑗
Σ
(𝑡 )−1
𝑌𝑖 𝑗

Σ
(𝑡 )
𝑌𝑖 𝑗𝑋𝑖 𝑗

is the Schur

complement Σ(𝑡 )
𝑗
/Σ(𝑡 )

𝑌𝑖 𝑗
of the block Σ(𝑡 )

𝑌𝑖 𝑗
in Σ(𝑡 )

𝑗
, under Assumptions

3 and 4 we use the determinantal lower bounds derived by Kalantari
and Pate (Corollary 2 of [44]) to obtain

det
(
Σ
(𝑡 )
𝑗
/Σ(𝑡 )

𝑌𝑖 𝑗

)
≥ 𝛼𝜅𝛽𝑑 (𝑡 )−𝜅 (13)

where

𝜅 =

𝛽𝑑 (𝑡) − tr
(
Σ
(𝑡 )
𝑗
/Σ(𝑡 )

𝑌𝑖 𝑗

)
𝛽 − 𝛼 .

Incorporating (12) and (13) into (11), and setting Γ and �̂� as
defined in the statement of the theorem, we conclude 𝐼 (𝑋 ;𝑌 ) ≤
Γ�̂�𝑑 (𝑡 )𝑑 (𝑡)𝑑 (𝑡 )/2, as required.

□
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