
QuickDrop: Efficient Federated Unlearning via Synthetic Data
Generation

Akash Dhasade
EPFL

Switzerland

Yaohong Ding
The Hong Kong Polytechnic

University
China

Song Guo
The Hong Kong University of Science

and Technology
China

Anne-Marie Kerrmarec
EPFL

Switzerland

Martijn de Vos
EPFL

Switzerland

Leijie Wu
The Hong Kong Polytechnic

University
China

ABSTRACT

Federated Unlearning (FU) aims to delete specific training data
from an ML model trained using Federated Learning (FL). However,
existing FU methods suffer from inefficiencies due to the high costs
associated with gradient recomputation and storage. This paper
presents QuickDrop, an original and efficient FU approach de-
signed to overcome these limitations. During model training, each
client uses QuickDrop to generate a compact synthetic dataset,
serving as a compressed representation of the gradient informa-
tion utilized during training. This synthetic dataset facilitates fast
gradient approximation, allowing rapid downstream unlearning at
minimal storage cost. To unlearn some knowledge from the trained
model, QuickDrop clients execute stochastic gradient ascent with
samples from the synthetic datasets instead of the training dataset.
The tiny volume of synthetic data significantly reduces computa-
tional overhead compared to conventional FUmethods. Evaluations
with three standard datasets and five baselines show that, with com-
parable accuracy guarantees,QuickDrop reduces the unlearning
duration by 463× compared to retraining the model from scratch
and 65−218× compared to FU baselines.QuickDrop supports both
class- and client-level unlearning, multiple unlearning requests,
and relearning of previously erased data.

CCS CONCEPTS

• Information systems→ Data management systems; • Comput-

ing methodologies→Machine learning.

KEYWORDS

Federated Unlearning, Machine Unlearning, Federated Learning,
Privacy and Security, Dataset Distillation.
ACM Reference Format:

Akash Dhasade, Yaohong Ding, Song Guo, Anne-Marie Kerrmarec, Martijn
de Vos, and Leijie Wu. 2024.QuickDrop: Efficient Federated Unlearning via

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Middleware’24, December 02–06, 2024, Hong Kong, China
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

Synthetic Data Generation. In Proceedings of 25th ACM/IFIP International
Middleware Conference (Middleware’24). ACM, New York, NY, USA, 13 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

The vast amount of data produced by computing devices is increas-
ingly used to train large-scale ML models that empower industrial
processes and personal experiences [28]. However, this data is often
privacy sensitive or very large in volume, making it prohibitively
expensive to upload it to a central server [2, 42]. To sidestep this
issue, federated learning (FL) is increasingly being applied to collab-
oratively train ML models in a privacy-preserving manner [29]. FL
obviates the need to move the data to a central location by having
participants only exchange model updates with a parameter server.
In each round of FL, the parameter server aggregates all incoming
trained models and then sends the aggregated global model back
to participants.

Recent privacy regulations like the General Data Protection Reg-
ulation (GDPR) and California Consumer Privacy Act (CCPA) grant
data owners with the “right to be forgotten” [5, 12]. In the realm of
ML, this requires organizations to be able to remove the influence
of personal data on the trained model upon request [44]. This is
called machine unlearning (MU) [3]. For instance, hospitals that
collaboratively trained a model using FL might have to unlearn par-
ticular data samples in response to patient requests. In FL, beyond
the “right to be forgotten", removing data from the model proves
essential for several other purposes. For instance, the ability to
quickly eliminate outdated, manipulated, or erroneously included
data enhances the security, responsiveness, and reliability of FL
systems [10]. However, the distributed nature of FL and the inabil-
ity of the parameter server to access training data directly makes
federated unlearning (FU) a challenging task.

A naive method involves retraining the model from scratch, ex-
cluding target samples. This triggers many new training rounds,
forcing clients to recompute gradients on the remaining data. There-
fore, retraining is prohibitively expensive, with respect to the time
and compute resources required. Alternatively, some methods store
gradients from original FL training for downstream unlearning [27].
However, the linear scaling of storage costs with the number of
clients and FL rounds leads to significant overhead. A more ef-
fective approach uses stochastic gradient ascent (SGA) on target
samples [41], optimizing in the direction that maximizes the loss
function. However, this approach updates the entire model, causing

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Middleware’24, December 02–06, 2024, Hong Kong, China Dhasade et al.

Train data (D)

Synthetic data (S)

FL training +
synthetic data generation Unlearning Recovery

Trained
model (θ)

Unlearned model (θf)

Many less samples
than train data

Data augmentation + fine-tuning

Forget
dataset (Sf)

Retain
dataset (S\Sf)

Client 1

Client n Client 1 Client n

Relearning1

2

3 4 5

Figure 1: The workflow of QuickDrop, our efficient federated unlearning method using synthetic data.

performance deterioration of the remaining samples. A subsequent
recovery phase is necessary, involving model retraining with the
remaining samples for a few rounds. While SGA is more efficient
than full retraining, it remains computationally demanding, requir-
ing clients to recompute numerous gradients for unlearning and
recovery. Thus, existing FU approaches are inefficient and incur
high costs for either gradient storage or recomputation.

To address this issue, we introduce QuickDrop, a novel FU
approach that efficiently performs unlearning using SGA and syn-
thetic data.QuickDrop circumvents the need to store or recompute
expensive gradients by employing a technique of gradient match-
ing [49] during FL training. This process synthesizes a compact,
client-specific dataset in situ, acting as a compressed representation
of original gradients. This synthetic dataset facilitates fast gradient
approximation for downstream unlearning and significantly en-
hances efficiency. Furthermore, this dataset is merely 1% of the total
volume of local datasets, resulting in minimal storage overhead.

The full workflow of QuickDrop is shown in Figure 1 and in-
volves five main steps. Initially, clients engage in regular FL train-
ing to collaboratively train a model (step 1). Simultaneously,
each client generates a compact synthetic dataset through gradient
matching, optimized for unlearning tasks. This synthetic dataset
is then augmented with a few original samples and fine-tuned
(step 2), which improves the model accuracy during recovery.
Unlearning rounds (step 3) leverage SGA on the local synthetic
dataset, maintaining efficiency due to its small volume. Recovery
rounds (step 4) also utilize the synthetic data, ensuring efficient
downstream recovery compared to using original datasets.Quick-
Drop also supports the efficient relearning of unlearned knowledge
(step 5), again leveraging the synthetic data. In summary, our
approach overcomes the limitations of traditional methods, offering
a streamlined and efficient solution for FU.

Contributions. This paper makes the following contributions:

(1) We introduceQuickDrop, a novel and efficient federated un-
learning approach that generates and uses synthetic datasets
to unlearn specific knowledge from a trained FL model (Sec-
tion 3).

(2) We formulate the problem of synthetic data generation for
unlearning and show how such synthetic data can be gen-
erated in situ in FL training by adapting the technique of
gradient matching [49] (Section 3.2).

(3) We implement and open-sourceQuickDrop, and evaluate its
unlearning performance in terms of efficiency and accuracy
on three standard datasets and five state-of-the-art (SOTA)
baselines (Section 4). Under comparable accuracy guarantees,
we find that QuickDrop reduces the duration of class un-
learning by 463× compared to model retraining from scratch
and 65-218× compared to other SOTA FU approaches.

2 BACKGROUND AND PROBLEM SETUP

We first provide background on machine and federated unlearning
in Section 2.1, then formulate the problem in Section 2.2, and finally
outline existing unlearning algorithms in Section 2.3.

2.1 Machine and Federated Unlearning

Machine unlearning (MU)was first proposed by Cao and Yang [6].
Consider a set of trained weights 𝜽 on a training dataset 𝐷 . The
purpose of MU is to remove the influence of a specific subset of
𝐷 𝑓 ⊂ 𝐷 on the model parameters 𝜽 . The subset 𝐷 𝑓 is generally
referred to as the forget dataset, and its complement 𝐷\𝐷 𝑓 is called
the retain dataset. Let the unlearning algorithm U be defined as
𝜽𝑓 = U(𝜽 , 𝐷 𝑓), where 𝜽𝑓 is the unlearned model. Unlearning thus
aims to obtain a model 𝜽𝑓 that is equivalent in performance to a
model trained only on 𝐷\𝐷 𝑓 . In other words, the unlearned model
𝜽𝑓 should perform well on 𝐷\𝐷 𝑓 while performing relatively less
well on 𝐷 𝑓 .

Federated unlearning (FU) is a MU technique where knowl-
edge is removed from a trained model in a distributed and collabo-
rative manner. Generally, FU is more challenging than MU for the
following two reasons. First, client data is only available on the
client’s side and cannot be moved to a central server. This mandates
active participation by clients to perform unlearning. It also implies
that the parameter server cannot conduct any fine-grained oper-
ations at the data level, rendering many existing MU techniques
inapplicable in FL settings. Second, when the original model is also
trained in a distributed, collaborative manner, e.g., using FL, the
parameter server does not always have access to intermediate, gran-
ular training information produced by clients. Some MU techniques
rely on recorded training information to carry out an unlearning
operation [19]. In FU settings, however, the parameter server might
be unable to collect specific training information for unlearning,
such as model updates per batch for each client.

QuickDrop: Efficient Federated Unlearning via Synthetic Data Generation Middleware’24, December 02–06, 2024, Hong Kong, China

2.2 Problem Setup

We consider a FL system containing 𝑁 clients (e.g., PCs or mobile
devices), where each client 𝑖 ∈ 𝑁 holds a local training dataset
𝐷𝑖 . Clients collaboratively train a global FL model 𝜽 using an FL
algorithm (e.g., FedAvg [29]). Once the global model 𝜽 is trained,
the parameter server may receive an unlearning request for the
forget dataset 𝐷 𝑓 . The characterization of 𝐷 𝑓 defines the type of
unlearning performed. We distinguish between the following three
types of unlearning:
• Class-level unlearning. This type of unlearning erases the
knowledge of a target class. Consequently, 𝐷 𝑓 encompasses
the entire data of a class. Denoting by 𝐷𝑐

𝑖
the data of class 𝑐

with the 𝑖-th client, we have 𝐷 𝑓 := ∪𝑖𝐷𝑐𝑖 , when the target
class is 𝑐 . The union is over all clients 𝑖 which possess sam-
ples of class 𝑐 . In essence, 𝐷 𝑓 for class-level unlearning is
distributed across clients.
• Client-level unlearning. This type of unlearning erases
the knowledge of a target client, e.g., when exercising the
right to be forgotten. Here, 𝐷 𝑓 contains the data of a single
client. When the target client is 𝑖 , 𝐷 𝑓 := 𝐷𝑖 . In this case, 𝐷 𝑓
is concentrated on a single client.
• Sample-level unlearning. This type of unlearning erases
the knowledge of one or more samples. Here, 𝐷 𝑓 contains
arbitrary samples from one or more clients. Sample-level un-
learning is the most general and difficult form of unlearning
[33, 41].

Relearning.While the main objective of our work is to unlearn
efficiently, it can be desirable to relearn the unlearned knowledge in
certain situations, e.g., when a client revokes its right to be forgotten.
Where unlearning erases the knowledge in 𝐷 𝑓 from the trained
model, relearning aims to add this knowledge back.

We remark that class- and client-level unlearning are the two
most common use cases in federated settings [33, 41]; very few
works address sample-level unlearning, even in the context of MU.
In this work, we also specifically focus on class-level and client-level
unlearning. We further discuss this aspect in Section 5.1.

2.3 Existing FU Algorithms and their

Drawbacks

We now discuss existing FU approaches and their drawbacks before
presenting the design of QuickDrop in Section 3.

Retraining from scratch. A naive way to unlearn 𝐷 𝑓 is to
retrain the model from scratch while omitting samples from 𝐷 𝑓 .
While this algorithm perfectly achieves the desired goal, complete
retraining is prohibitively expensive as it initiates new FL training
rounds on 𝐷\𝐷 𝑓 . Even executing a single unlearning request in
such a way is highly compute- and time-intensive. We refer to this
algorithm as Retrain-Or i.e., as a retraining oracle due to its ideal
achieved performance.

Gradient calibration. One way to speed up retraining from
scratch is to reuse gradient information from the original training
to avoid regenerating all gradients from scratch. However, these
gradients must be adapted based on the forget dataset𝐷 𝑓 and retain
dataset 𝐷\𝐷 𝑓 , through a process referred to as gradient calibration.
Algorithms employing gradient calibration like FedEraser [27] trade
the central server’s storage for unlearned model’s construction

Table 1: Comparison of FU approaches andQuickDrop.

Algorithms
Class-
unlearn.

Client-
unlearn. Relearn. Storage

Eff.
Computation

Eff.
Retrain-Or ✓ ✓ ✓ ✓ ✗ (very low)

FedEraser [27] ✓ ✓ ✓ ✗ ✗ (low)
S2U [13] ✗ ✓ ✓ ✓ ✗ (low)
SGA [41] ✓ ✓ ✓ ✓ ✗ (medium)

FU-MP [38] ✓ ✗ ✗ ✓ ✗ (medium)
QuickDrop ✓ ✓ ✓ ✓1 ✓ (high)

1 The exact storage overhead depends on the scale parameter.

time by leveraging historical parameter updates from FL training.
However, the storage costs can grow quite large while the efficiency
gains compared to retraining from scratch remain modest (∼ 4×).

Stochastic gradient ascent (SGA). Another FU approach in-
volves performing SGA steps on 𝐷 𝑓 [41]. In each FL round, clients
having data in 𝐷 𝑓 perform local SGA steps while the parameter
server aggregates the received updates. However, SGA training
introduces noise that affects the performance of remaining data.
This noise necessitates subsequent recovery rounds during which
clients engage in regular SGD training on the retain dataset 𝐷\𝐷 𝑓 .
An unlearning request thus encompasses unlearning on 𝐷 𝑓 and
recovery on 𝐷\𝐷 𝑓 with each request updating the model with the
entire dataset. Therefore, SGA remains inefficient when dealing
with high dataset volumes or when executing many unlearning
requests. Algorithm 1 provides the pseudo code for SGA.

S2U. Inspired by the observation that the up- or down-scaling
of model updates can substantially influence the global model, S2U
scales down the forgetting client’s updates while scaling up the
updates of remaining clients [13]. Its unlearning and recovery stages
are integrated and conducted simultaneously, like Retrain-Or. S2U
is specifically designed to only support client-level unlearning.

Model Pruning. FU-MP [38] uses model pruning by first mea-
suring the class discrimination of channels in the model (i.e., the
relevance of different classes on themodel channel) and then prunes
the most relevant channel of the target class to unlearn it. While
FU-MP is much more efficient than Retrain-Or, it only applies to
class-level unlearning. Additionally, the pruned channels prevent
relearning as pruning irreversibly modifies the model.

Except for FU-MP, all aforementioned FU approaches rely on
some form of gradient information to perform unlearning. However,
such approaches remain inefficient since gradients are expensive
to store and recompute. Approaches such as S2U and FU-MP do
not generalize to both client- and class-level unlearning. Table 1
provides a comparison of existing FU approaches and our work.
The popularity of gradient-based approaches for FU motivates the
following question: what if one could succinctly compress all the
gradient information such that it can be reused for fast gradient ap-
proximation for any downstream unlearning? This directly leads to
our design of QuickDrop, which, during FL training, derives syn-
thetic samples that accumulate gradient information in a compact
form, enabling efficient unlearning.

Middleware’24, December 02–06, 2024, Hong Kong, China Dhasade et al.

Algorithm 1: Unlearning using the SGA algorithm [41].
Input:Model parameters 𝜽 trained via FL on training datasets

{𝐷𝑖 }𝑁𝑖=1, forget set 𝐷𝑓 , local update steps𝑇 and learning
rate 𝜂𝜽 .

1 Server executes:

2 Receive unlearning request for 𝐷𝑓
3 Execute unlearning rounds using FedAvg (𝐷𝑓 , 𝜽 , unlearn)
4 Execute recovery rounds using FedAvg (𝐷\𝐷𝑓 , 𝜽 , recover)
5 FedAvg (𝑍 , 𝜽 , phase):

6 Let {𝑍𝑖 }𝑁𝑖=1 ← counterparts of 𝑍 with respective clients1

7 𝜽0,0 ← 𝜽

8 for 𝑘 = 0, 1, · · · until convergence do
9 for each client 𝑖 = 1, · · · , 𝑁 in parallel2 do
10 Initialize 𝜽 𝑖

𝑘,0 ← 𝜽𝑘,0
11 for 𝑡 = 0, · · · ,𝑇 − 1 do
12 Sample batch 𝐵 ∼ 𝑍𝑖 and compute ∇L𝑍𝑖 (𝜽 𝑖

𝑘,𝑡
)

13 if phase is unlearn then

14 𝜽 𝑖
𝑘,𝑡+1 ← 𝜽 𝑖

𝑘,𝑡
+ 𝜂𝜽 ∇L𝑍𝑖 (𝜽 𝑖𝑘,𝑡)

15 else if phase is recover then

16 𝜽 𝑖
𝑘,𝑡+1 ← 𝜽 𝑖

𝑘,𝑡
− 𝜂𝜽 ∇L𝑍𝑖 (𝜽 𝑖𝑘,𝑡)

17 𝜽𝑘+1,0 ←
∑𝑁
𝑖=1
|𝑍𝑖 |
|𝑍 | 𝜽

𝑖
𝑘,𝑇

3 DESIGN OF QUICKDROP

QuickDrop unlearns using SGA, but it does so on a synthetically
generated dataset rather than with the original dataset. This syn-
thetic dataset is also used during recovery. In Section 3.1, we detail
how the significantly smaller size of the synthetic data unlocks sig-
nificant efficiency gains compared to standard SGA. In Section 3.2,
we formulate the process of generating synthetic data for unlearn-
ing and describe the algorithm for synthetic data generation, which
operates in situ with FL training. We discuss in Section 3.3 how
the synthetic data can be fine-tuned to boost model accuracy dur-
ing recovery. Finally, we summarize the end-to-end workflow of
QuickDrop in Section 3.4.

3.1 Synthetic Data Generation for Efficient

Unlearning

As detailed in Algorithm 1, SGA executes unlearning rounds on
𝐷 𝑓 followed by recovery rounds on 𝐷\𝐷 𝑓 . To significantly reduce
the volume of data involved when executing an unlearning request,
we generate synthetic samples that condense critical gradient in-
formation from the original training into a small synthetic dataset.
This process is also known as dataset distillation (DD) [40]. In our
FL setting, each client 𝑖 ∈ 𝑁 independently synthesizes a synthetic
dataset 𝑆𝑖 from its local dataset 𝐷𝑖 such that |𝑆𝑖 | ≪ |𝐷𝑖 |. More
specifically, each client locally generates a synthetic per-class coun-
terpart 𝑆𝑐

𝑖
of its original per-class data 𝐷𝑐

𝑖
. Per-class generation

of 𝑆𝑖 enables QuickDrop to perform both class- and client-level
unlearning. Similar to the training samples used by FL, generated
synthetic samples never leave the device. The unlearning algorithm

1Only clients with non-empty 𝑍𝑖 are required to participate.
2Clients can also be sub-sampled.

U can thus be modified as 𝜽𝑓 = U(𝜽 , 𝑆𝑓), where 𝑆𝑓 is the syn-
thetic counterpart of the forget dataset 𝐷 𝑓 . In other words, once
the synthetic data is generated, QuickDrop can serve any unlearn-
ing requests by executing unlearning rounds on 𝑆𝑓 and recovery
rounds on 𝑆\𝑆𝑓 . To exemplify, when perform class-level unlearning
for class 𝑐 , we have 𝑆𝑓 := ∪𝑖𝑆𝑐𝑖 where client 𝑖 has class 𝑐 . Similarly,
when performing client-level unlearning of the 𝑖-th client, we have
𝑆𝑓 := 𝑆𝑖 . Since the synthetic data is orders of magnitude smaller in
volume, the unlearning task can executed very efficiently as only a
few unlearning and recovery rounds are required to unlearn and
recover the knowledge, respectively.

3.2 Formulating the Distillation Task

The goals of standard DD differ from our task of synthetic data
generation for unlearning. We first formally describe standard DD
before formulating the task in the context of unlearning. Suppose
we are given a training dataset 𝐷 from a distribution 𝑃𝐷 containing
𝑚𝐷 pairs of training images and class labels 𝐷 = {(𝒙𝑖 , 𝑦𝑖)}|𝑚𝐷

𝑖=1
where 𝒙𝑖 ∈ X ⊂ R𝑑 , 𝑦𝑖 ∈ {0, . . . ,𝐶 − 1} and 𝐶 is the number of
classes. Let 𝜙 be a learnable function (e.g., a deep neural network)
with parameters 𝜽 that correctly predicts labels of images. One can
learn the parameters of this function by minimizing an empirical
loss over the training set:

𝜽𝐷 = argmin
𝜽
L𝐷 (𝜽) (1)

where L𝐷 (𝜽) = 1
𝑚𝐷

∑
(𝒙,𝑦) ∈𝐷 ℓ (𝜙𝜽 (𝒙), 𝑦) , ℓ (·, ·) is a task-specific

loss (i.e., cross-entropy) and 𝜽𝐷 is the minimizer of L𝐷 . The gener-
alization performance of the obtained model 𝜙𝜽𝐷 can be written
as E𝒙,𝑦∼𝑃D [ℓ (𝜙𝜽𝐷 (𝒙), 𝑦)]. DD seeks to generate a small set of con-
densed synthetic samples with their labels, 𝑆 = {(𝒔𝑖 , 𝑦𝑖)}|𝑚𝑆𝑖=1 where
𝒔𝑖 ∈ R𝑑 and 𝑦𝑖 ∈ Y such that𝑚𝑆 ≪𝑚𝐷 . Similar to Eq. (1), one can
train 𝜙 with these synthetic samples as follows:

𝜽𝑆 = argmin
𝜽
LS (𝜽) (2)

where L𝑆 (𝜽) = 1
𝑚𝑆

∑
(𝒔,𝑦) ∈𝑆 ℓ (𝜙𝜽 (𝒔), 𝑦) and 𝜽𝑆 is the minimizer

of L𝑆 . The goal of standard DD is to obtain 𝑆 such that the gener-
alization performance of 𝜙𝜽𝑆 is as close as possible to 𝜙𝜽𝐷 , i.e.,

E𝒙,𝑦∼𝑃D [ℓ (𝜙𝜽𝐷 (𝒙), 𝑦)] ≃ E𝒙,𝑦∼𝑃D [ℓ (𝜙𝜽𝑆 (𝒙), 𝑦)] (3)

over the real data distribution 𝑃D .

3.2.1 Formulating DD for FU. While the above DD formulation
may work for FU, generating general-purpose synthetic samples
is a compute intensive process, requiring many optimization iter-
ations [45]. To significantly reduce the computational overhead
for clients, we reformulate the synthetic data generation task to
specifically target unlearning instead of general-purpose DD. We
refer to the outcome ofU(𝜽 , 𝐷 𝑓) by 𝜽𝐷𝑓 and denote the outcome
ofU(𝜽 , 𝑆𝑓) by 𝜽𝑆𝑓 . The goal of DD inQuickDrop is to generate
synthetic data such that the generalization performance of the un-
learned model 𝜙𝜽𝑆𝑓 is as close as possible to unlearned model 𝜙𝜽𝐷𝑓 ,
i.e.,

E𝒙,𝑦∼𝑃D [ℓ (𝜙𝜽𝑆𝑓 (𝒙), 𝑦)] ≃ E𝒙,𝑦∼𝑃D [ℓ (𝜙𝜽𝐷𝑓 (𝒙), 𝑦)] (4)

over the global data distribution 𝑃D .

QuickDrop: Efficient Federated Unlearning via Synthetic Data Generation Middleware’24, December 02–06, 2024, Hong Kong, China

3.2.2 DD with Gradient Matching. We aim to generate synthetic
samples such that the impact of forgetting the target synthetic data
is similar to the effect of forgetting the target original data. When
using SGA as the unlearning algorithmU, intuitively, the synthetic
data should be such that the gradients are as close as possible to
the original data, thereby following the reverse trajectory along the
optimization path when ascending. Additionally, generating such
synthetic data must be local to the client, avoiding any transfer
of private local information. Inspired by the dataset condensation
algorithm of Zhao et al. [49] in centralized settings, we achieve this
by matching gradients obtained over training and synthetic data
over several time steps during the execution of FL training, locally
at each client. Precisely, each client obtains its synthetic data 𝑆𝑖 by
minimizing the following:

min
𝑆𝑖

𝐾−1∑︁
𝑘=0

𝑇−1∑︁
𝑡=0

𝑑 (∇𝜽L𝑆𝑖 (𝜽 𝑖𝑘,𝑡),∇𝜽L
𝐷𝑖 (𝜽 𝑖

𝑘,𝑡
)) (5)

where 𝑑 (.; .) is a function that measures the distance between the
gradients for L𝑆𝑖 and L𝐷𝑖 w.r.t 𝜽 , 𝐾 denotes the total number
of FL global rounds and 𝑇 represents the number of local steps
within each round. At each time step, the synthetic data samples
are updated by running a few steps of an optimization algorithm
opt-alg, e.g., stochastic gradient descent (SGD):

𝑆𝑖 ← opt-alg𝑆𝑖 (𝑑 (∇𝜽L
𝑆𝑖 (𝜽 𝑖

𝑘,𝑡
),∇𝜽L𝐷𝑖 (𝜽 𝑖𝑘,𝑡)), 𝜍𝑆 , 𝜂𝑆) (6)

where 𝜍𝑆 and 𝜂𝑆 are the number of steps and the learning rate. In
other words, the synthetic data absorbs the gradient information
along the optimization trajectory of the FL model 𝜽 𝑖

𝑘,𝑡
. The syn-

thetic data, therefore, can be interpreted as a compact compression
of all the gradient information, which is reused for fast gradient
approximation in downstream unlearning.

We detail this procedure to generate synthetic data in Algo-
rithm 2. Each client initializes its per-class synthetic dataset 𝑆𝑐

𝑖
by

randomly picking samples from the original dataset 𝐷𝑐
𝑖
(lines 2-7).

In FL settings, clients typically have a highly unbalanced number
of samples per class (non-IIDness) [51]. Thus, we set the number of
synthetic samples per class proportionately to the original per-class
dataset size through the scale parameter 𝑠 as |𝑆𝑐

𝑖
| = ⌈|𝐷𝑐

𝑖
|/𝑠⌉. The

ceil function (⌈.⌉) ensures at least one sample per class in synthetic
datasets if the class exists within 𝐷𝑖 . Increasing 𝑠 decreases the
number of synthetic samples but also reduces the accuracy after
recovery since samples contain less information. We set the scale
parameter to 100, resulting in a synthetic dataset which is 1% in
volume of the original dataset. We found this value of 𝑠 to yield a
reasonable balance between efficiency and effectiveness. While this
incurs some storage overhead for clients, it is marginal compared
to the volume of the original dataset. We also experiment with
different values of 𝑠 in Section 4.4.2.

Synthetic data generation happens in situ with FL training, re-
sulting in a negligible compute overhead for clients (also see sec-
tion 4.4.1). During each local update step, clients sample mini-batch
pairs 𝐵𝐷𝑖 and 𝐵𝑆𝑖 from their original and synthetic datasets, respec-
tively (line 12). They evaluate respective gradients on the current
model parameter 𝜽 𝑖

𝑘,𝑡
(lines 13 and 14). While the clients use the

gradient on the original data (∇L𝐷𝑖) to perform the FL local update

Algorithm 2: Generating synthetic data during FL training
in QuickDrop.
Input: Training datasets {𝐷𝑖 }𝑁𝑖=1, FL global rounds 𝐾 , local update

steps𝑇 , number of local update steps 𝜍𝑆 and learning rate
𝜂𝑆 for synthetic samples, model learning rate 𝜂𝜽 and scale
parameter 𝑠 .

1 ▷ Initialization
2 for each client 𝑖 = 1, · · · , 𝑁 do

3 if client 𝑖 has class 𝑐 then
4 𝑆𝑐

𝑖
← Randomly pick ⌈ |𝐷𝑐

𝑖
|/𝑠 ⌉ samples from 𝐷𝑐

𝑖

5 else

6 𝑆𝑐
𝑖
← ∅

7 𝑆𝑖 ← ∪𝑐𝑆𝑐𝑖
8 for 𝑘 = 0, · · · , 𝐾 − 1 do
9 for each client 𝑖 = 1, · · · , 𝑁 in parallel do
10 Initialize 𝜽 𝑖

𝑘,0 ← 𝜽𝑘,0
11 for 𝑡 = 0, · · · ,𝑇 − 1 do
12 Sample minibatch pairs 𝐵𝐷𝑖 ∼ 𝐷𝑖 and 𝐵𝑆𝑖 ∼ 𝑆𝑖
13 Compute ∇L𝐷𝑖 (𝜽 𝑖

𝑘,𝑡
) on 𝐵𝐷𝑖

14 Compute ∇L𝑆𝑖 (𝜽 𝑖
𝑘,𝑡
) on 𝐵𝑆𝑖

15 Update 𝑆𝑖 using 𝑑 (∇L𝐷𝑖 ,∇L𝑆𝑖) ▷ eq. (6)
16 ▷ Update FL model using the above gradient
17 𝜽 𝑖

𝑘,𝑡+1 ← 𝜽 𝑖
𝑘,𝑡
− 𝜂𝜽 ∇L𝐷𝑖 (𝜽 𝑖𝑘,𝑡)

18 𝜽𝑘+1,0 ←
∑𝑁
𝑖=1
|𝐷𝑖 |
|𝐷 | 𝜽

𝑖
𝑘,𝑇

Output: {𝑆𝑖 }𝑁𝑖=1, 𝜽𝐾,0

(line 17), the gradient is also matched with the gradient on the syn-
thetic data (∇L𝑆𝑖) (line 15). The synthetic samples corresponding
to the mini-batch 𝐵𝑆𝑖 are then updated through the execution of
opt-alg for 𝜍𝑆 steps. The server executes parameter aggregation
like standard FL (line 18). By the end of FL training,QuickDrop gen-
erates per-client synthetic datasets {𝑆𝑖 }𝑁𝑖=1 along with the trained
FL global model 𝜽𝐾,0. Finally, we remark that QuickDrop employs
a class-wise gradient matching, similar to [49], wherein the update
of synthetic samples in 𝐵𝑆𝑖 takes place class-wise. We omitted it
from Algorithm 2 for presentation clarity.

3.3 Enhancing Recovery for SGA

Once the synthetic data is generated on each client, QuickDrop
employs SGA to unlearn the forget dataset𝐷 𝑓 through 𝑆𝑓 . However,
the model must still undergo the recovery phase on the retain
dataset 𝐷\𝐷 𝑓 to restore the performance on the remaining data.
Recovery is akin to original FL training and hence requires high-
quality samples. While recovery inQuickDrop can be conducted
using 𝐷\𝐷 𝑓 , the volume of remaining data can be quite large, thus
significantly affecting the efficiency. On the other hand, while we
can use 𝑆\𝑆𝑓 to achieve efficient recovery, the restoration quality is
not the same aswhen using𝐷\𝐷 𝑓 . This is because the synthetic data
generation was not targeted towards generalization. We address
this issue through the following two amendments.

3.3.1 Data augmentation with original samples. We found that even
including a few original samples in the synthetic datasets during
recovery can significantly boost the restoration performance. In

Middleware’24, December 02–06, 2024, Hong Kong, China Dhasade et al.

our experimental setting, we randomly select samples from the
original dataset with the same size as the synthetic dataset (i.e.,
synthetic : selected = 1:1). Since the size of the synthetic dataset is
1% compared to the original dataset, the relative size of the mixed
dataset is only 2% after combining selected samples. Therefore, its
influence on storage overhead is still marginal.

3.3.2 Fine-tuning (optional). One can optionally enhance the re-
covery accuracy by conducting additional optimization steps on the
previously generated synthetic data, referred to as fine-tuning. We
remark that even without fine-tuning, QuickDrop already demon-
strates excellent unlearning performance. For fine-tuning, we use
the distillation algorithm of Zhao et al. [49] which targets general-
ization. More specifically, the algorithm performs gradient match-
ing but across thousands of parameter initializations of the deep
neural network 𝜙 , necessary to achieve good generalization. In sec-
tion 4.4.1, we show that only 200 of such fine-tuning steps are
sufficient to make the recovery accuracy nearly match that of the
oracle (Retrain-Or). Fine-tuning is independently executed by
each client on their synthetic dataset 𝑆𝑖 .

3.4 End-to-end Workflow of QuickDrop

Finally, we summarize the end-to-end workflow of QuickDrop,
also depicted in Figure 1. Our algorithm involves the following five
steps:

(1) FL training + synthetic data generation – Clients initially
train a global model via standard FL while also deriving
synthetic data samples for unlearning. This procedure is
described in Algorithm 2.

(2) Data augmentation + fine-tuning – Clients augment their
synthetic sets with a very small number of original data
samples and optionally conduct some fine-tuning steps to
improve the quality of synthetic data for recovery.

(3) Unlearning – When an unlearning request arrives at the
server, clients engage in SGA-based unlearning using their
synthetic datasets. If the request concerns class-level un-
learning, all clients containing the specific target class 𝑐 are
involved, i.e., 𝑆𝑓 := ∪𝑖𝑆𝑐𝑖 where client 𝑖 has class 𝑐 . If the
request concerns client-level unlearning, only the specific
target client is involved, i.e., 𝑆𝑓 := 𝑆𝑖 .

(4) Recovery – All clients with remaining data after removing
the forget dataset engage in the recovery phase. These clients
perform standard FL-like training (i.e., using SGD) on their
synthetic datasets.

(5) Relearning – Clients are able to efficiently relearn previ-
ously unlearned knowledge by performing standard FL-like
training (i.e., using SGD) on 𝑆𝑓 .

4 EVALUATION

We conduct extensive evaluations to assess the computational ef-
ficiency and performance of QuickDrop using three standard
datasets and against five FU baselines. Our evaluations cover the
performance of a single unlearning request (Section 4.2), multiple
unlearning requests (Section 4.3), the effect of fine-tuning and the
scale factor (Section 4.4), the performance in larger networks (Sec-
tion 4.5), client-level unlearning (Section 4.6), the performance of

relearning (Section 4.7) and the computational overhead incurred
by QuickDrop (Section 4.8).

4.1 Experimental Setup

We evaluate the performance of QuickDrop on three standard im-
age classification datasets:MNIST [26], CIFAR-10 [25], and SVHN [30].
For all datasets, we use a ConvNet as the deep neural network back-
bone [14]. Its modular architecture contains 𝐷 duplicate blocks,
and each block has a convolutional layer with𝑊 (3 × 3) filters, a
normalization layer 𝑁 , an activation layer 𝐴, and a pooling layer
𝑃 , denoted as [𝑊, 𝑁,𝐴, 𝑃] × 𝐷 . The default ConvNet (unless speci-
fied otherwise) includes 3 blocks, each with 128 filters, followed by
InstanceNorm, ReLU, and AvgPooling modules. A linear classifier
follows the final block.

All experiments are conducted on a machine equipped with an
i5-10600K CPU and an RTX 2060 GPU. All source code is made
available in a GitHub repository. 1

Federated Learning. To generate local datasets with varying
data heterogeneity, we adopt the Dirichlet distribution-based ap-
proach from previous works [24, 52]. The degree of non-IIDness is
controlled by a parameter 𝛼 ∈ [0,∞), with lower values correspond-
ing to higher heterogeneity. We fix 𝛼 = 0.1 for all our experiments
involving non-IID data. This value is commonly used in literature
and results in highly non-IID data partitions across clients. We also
conduct experiments with IID distributions in Section 4.6. We con-
duct experiments with 10 and 20 total clients, except in Section 4.5,
where we assess the performance of QuickDrop in a network with
100 clients. All clients participate in each round of FL training and
unlearning unless mentioned otherwise.

Hyperparameters. In all experiments, we run 𝐾 = 200 global
rounds for FL training with 50 local steps per round i.e., 𝑇 = 50.
We use a mini-batch size of 256 for FL training i.e., to generate
gradients on real images. We use SGD as the client local optimizer
and a learning rate 𝜂𝜽 = 0.01 for FL training. The learning rates
are separately tuned for unlearning and recovery, which are 0.02
and 0.01, respectively. For all experiments with QuickDrop, we
perform a single round of unlearning and two rounds for recovery,
which we found to be the minimum for the model to sufficiently
unlearn particular knowledge and restore the performance on the
remaining data. All experiments use data augmentation for recovery
(Section 3.3.1), but we disable fine-tuning for all experiments (i.e.,
𝐹 = 0), except for the experiments reported in Section 4.4.1.

Synthetic data generation. For synthetic data generation, we
set 𝜍𝑆 = 1, 𝜂𝑆 = 0.1 and use SGD as the opt-alg algorithm follow-
ing [49]. When fine-tuning using the algorithm of Zhao et al. [49],
we use their default hyperparameters while varying the number
of fine-tuning steps 𝐹 . More specifically, we vary the number of
outer-loop steps while keeping the inner-loop steps fixed at 50. We
initialize the synthetic samples {𝑆𝑖 }𝑁𝑖=1 as randomly selected real
training samples from the original local client dataset. We found
this to be more effective in our setting than initializing these sam-
ples from Gaussian noise. We use the same distance function 𝑑
for gradient matching as in [49] and, except for the experiments
in Section 4.4.2, fix the scale parameter 𝑠 = 100 for all experiments.

1See https://github.com/sacs-epfl/quickdrop.

https://github.com/sacs-epfl/quickdrop

QuickDrop: Efficient Federated Unlearning via Synthetic Data Generation Middleware’24, December 02–06, 2024, Hong Kong, China

Target

class 9

Unlearn Recover
0

25

50

75

1 2 3 4 5 6
Round

Te
st

in
g

A
cc

ur
ac

y
[%

]

class
0

1

2

3

4

5

6

7

8

9

Figure 2: Class-wise testing accuracy on the CIFAR-10 dataset

when unlearning class 9.QuickDrop successfully unlearns

class 9 while retaining good performance on the remaining

classes after recovery.

Baselines.We compare the performance of QuickDropwith the
five FU baselines discussed in Section 2.3. These are Retrain-Or
(the retraining oracle), SGA-Or (SGA on the original dataset) [41],
FedEraser [27], FU-MP [38] and S2U [13]. Our baselines thus cover
a diverse array of SOTA techniques on both client- and class-level
unlearning. We focus on CV tasks to ensure compatibility with
our selected baselines. Many of our baselines primarily demon-
strate their performance on CV tasks, and some, like FU-MP, are
specifically designed for CNNs due to their use of channel pruning
techniques.

Metrics.We report testing accuracy as the Top-1 accuracy achieved
on the specific testing data of each dataset (e.g., class-wise testing ac-
curacy when doing class-level unlearning). For a more fine-grained
comparison, we also report the accuracy on the forget dataset, re-
ferred to in this section as the F-Set, and on the retain dataset,
referred to as the R-Set. The goal of any FU approach is to match
the accuracy of Retrain-Or (i.e., oracle’s performance) on both
the F-Set and R-Set. We run each experiment five times and report
averaged values.

4.2 Performance of a Single Unlearning Request

In this section, we will show the effectiveness of QuickDrop by
evaluating the efficiency and effectiveness when doing a single
unlearning request.

4.2.1 Unlearning a Single Class. We first quantify the change in
testing accuracy of target and non-target classes after the unlearn-
ing and recovery stages, using the CIFAR-10 dataset and 10 clients.
The network collaboratively unlearns from the model the knowl-
edge corresponding to class 9 (digit “9”) by performing one round of
unlearning and two rounds of recovery. Figure 2 shows the testing
accuracy for each class during six rounds in different colors when
unlearning withQuickDrop. WhenQuickDrop starts the unlearn-
ing stage (round 2), we observe a rapid accuracy drop on the target
class while the accuracy of non-target classes decreases as well.
This is because SGA introduces some noise that affects non-target
classes, even though the model parameters changed by SGA are
mainly for unlearning the knowledge of the target class. We observe

that even a single unlearning round is sufficient to unlearn all knowl-
edge of the target class (its accuracy drops to 0.82%), and executing
additional unlearning rounds is futile. Therefore, we execute a sin-
gle unlearning round for QuickDrop in all remaining experiments.
The recovery stage starts immediately after the unlearning stage
(round 3). Figure 2 shows that the accuracies of non-target classes
after two recovery rounds are almost restored to their original val-
ues. We observed that executing additional recovery rounds did not
improve the performance of non-target classes. In the following
section, we validate that the accuracies obtained byQuickDrop are
consistent with those from Retrain-Or, demonstrating effective
unlearning.

4.2.2 Accuracy against Baselines. Next, we compare the perfor-
mance of QuickDrop with our baselines on CIFAR-10 when un-
learning a single class. Table 2 shows the accuracy on the F-Set and
R-Set for different FU approaches and after each stage (unlearn-
ing and recovery). We remark that there is no recovery stage for
Retrain-Or. Table 2 shows that, after the unlearning stage, all ap-
proaches effectively eliminate the knowledge of the target class in
the model as the F-Set accuracy matches that of Retrain-Orwhich
achieves 0.81%. QuickDrop achieves 0.82% on the F-set, demon-
strating the effectiveness of synthetic samples for unlearning. After
recovery, all baselines restore the accuracy of the R-Set close to the
values achieved with Retrain-Or. The accuracy of QuickDrop
after recovery, 70.48%, is slightly lower than that of the baselines
except for FedEraser. This is because the synthetic samples do not
perfectly represent the original dataset, as they are optimized for
unlearning. However, additional fine-tuning of synthetic datasets
can close this gap at the cost of additional computation (see Sec-
tion 4.4.1). Nonetheless, we conclude thatQuickDrop effectively
unlearns data samples with minimal impact on the performance of
remaining samples. More importantly, QuickDrop unlearns signif-
icantly more efficiently than the baselines, thanks to the synthetic
samples, as we show in Section 4.2.4.

4.2.3 Membership Inference Attack. To further assess the effective-
ness of unlearning with QuickDrop, we conduct a membership in-
ference attack (MIA) on the unlearned model, which follows related
work on MU [9]. The MIA aims to determine whether a particular

F−Set R−Set

Q
u

ic
kD

ro
p

R
et

ra
in

−
O

r

S
G

A
−

O
r

F
U

−
M

P

F
ed

E
ra

se
r

Q
u

ic
kD

ro
p

R
et

ra
in

−
O

r

S
G

A
−

O
r

F
U

−
M

P

F
ed

E
ra

se
r

0

20

40

60

80

0

1

2

3

A
cc

ur
ac

y
[%

]

Figure 3: The membership inference attack (MIA) accuracy

of all baselines after unlearning on the CIFAR-10 dataset

with 10 clients and non-IID partitioning.

Middleware’24, December 02–06, 2024, Hong Kong, China Dhasade et al.

Table 2: The accuracy and computation cost of QuickDrop and FU baselines under class-level unlearning on the CIFAR-10

dataset, with non-IID data distributions (𝛼 = 0.1) and in a 10-client network. The F-Set and R-Set denote the accuracy on the

forget dataset and the retain dataset. The speedup is measured with respect to Retrain-Or.

Stage Unlearning Recovery Unlearn. + Recovery
Accuracy Computation Cost Accuracy Computation Cost Total

FU approach F-Set R-Set Round Time (s) Data Size F-Set R-Set Round Time (s) Data Size Time (s) Speedup
Retrain-Or 0.81% 74.95% 30 7239.58 45 000 — — — — — 7239.58 1×
FedEraser 0.02% 22.01% 10 2637.42 45 000 0.01% 69.67% 3 764.83 45 000 3402.25 2.12×
SGA-Or 0.75% 48.69% 2 495.17 5000 1.03% 74.83% 2 551.33 45 000 1046.50 6.92×
FU-MP 0.12% 11.58% 1 61.36 50 000 0.09% 73.96% 4 953.62 45 000 1014.98 7.13×

QuickDrop 0.82% 37.68% 1 5.03 100 0.85% 70.48% 2 10.58 900 15.61 463.7×

0

25

50

75

0 10 20 30 40 50
Round

Te
st

in
g

A
cc

ur
ac

y
[%

] class

0

1

2

3

4

5

6

7

8

9

Figure 4: The accuracy of each class with sequential unlearning requests on CIFAR-10 and with 𝛼 = 0.1. We unlearn a random

class every five rounds and highlight the unlearning and recovery stages in blue and yellow shades, respectively. The class

unlearning order is [5, 8, 0, 3, 2, 4, 7, 9, 1, 6].

sample is included in the model’s knowledge. We implement the
MIA according to the settings in [16] and measure how often the
attack model classifies a data sample from deleted data as a training
sample of the unlearned model, serving as an alternative metric to
test accuracy. Figure 3 shows these MIA accuracies on the F-Set and
R-Set after the unlearning algorithm terminates. The performance
of Retrain-Or can be considered optimal since the trained model
has never seen the unlearned samples. For all approaches, the MIA
accuracy on the F-Set is below 1%. We also observe that the MIA
accuracy of QuickDrop on the R-Set (71.62%) is competitive with
that of the baselines (67.28 − 74.21%) while the oracle achieves
77.25%. Thus,QuickDrop effectively unlearns knowledge from a
trained model, evidenced by its MIA performance.

4.2.4 Computation Efficiency. Table 2 also shows the computa-
tional cost for unlearning and recovery in terms of rounds, time
required, and the number of data samples involved in executing
these rounds. The computation costs (round and time) correspond
to the attainment of convergence in the specific phase (unlearning
or recovery) for each baseline. We observe significant differences in
computation cost between the evaluated FU approaches. Since DD
reduces the number of samples for each client, the unlearning stage
inQuickDrop only takes 5.03 s, and 10.58 s in the recovery stage;
both stages are completed in just 15.61 s. This efficiency is because
a round of unlearning and recovery withQuickDrop only involves
100 and 900 data samples, respectively. Although SGA-Or only
needs two rounds each to unlearn and recover, it takes much longer

(1046.50 s) in total thanQuickDrop (15.61 s) since it must operate
on the complete original data (5000 data samples in the unlearning
stage and 45 000 samples in the recovery stage). While Retrain-Or
is the simplest FU approach with the highest R-Set accuracy after
unlearning, its computational time renders this approach infeasi-
ble in many scenarios, which is 6.92× higher than SGA-Or and
463.7× higher than QuickDrop. We note that FU-MP employs a
different technique than other baselines, i.e., model pruning, while
its recovery stage is the same. Since model pruning only depends
on information obtained from inference, which can be done rela-
tively quickly, the unlearning is relatively fast (61.36 s). However,
the recovery is still slow, resulting in a total time of 1014.98 s in
comparison to 15.61 s forQuickDrop. Thus,QuickDrop remains
65× faster than FU-MP.

Although the computation efficiency of FedEraser improves
over Retrain-Or, it stays relatively low (3402.25 s) due to themodel
update calibration step, which requires extra model training on all
the remaining data of non-target classes. Consequently,QuickDrop
also is significantly faster than FedEraser (218×). We note that
FedEraser also incurs significant storage costs to retain historical
model updates, which increases linearly with the number of clients
and executed FL rounds. Thus, from Table 2, we conclude that
QuickDrop achieves quick unlearning and recovery, boasting a
speedup of 463.7× over Retrain-Or and 65 − 218× compared to
other baselines.

QuickDrop: Efficient Federated Unlearning via Synthetic Data Generation Middleware’24, December 02–06, 2024, Hong Kong, China

Retrain−OR

71

72

73

74

75

0 50 100 150 200
Fine−tuning Steps

A
cc

ur
ac

y
[%

]

0k

5k

10k

15k

20k

0 50 100 150 200
Fine−tuning Steps

G
ra

d.
 C

om
pu

ta
tio

ns
on

 O
rig

in
al

 D
at

a During FL

Figure 5: The accuracy on the R-Set after recovery (left) and

the number of gradient computations performed on origi-

nal data (right) when doing additional fine-tuning steps on

CIFAR-10. The portion in orange corresponds to FL train-

ing, while the gray portion corresponds to new gradients

computed for fine-tuning.QuickDrop nearly matches the

accuracy of Retrain-Or at an extra gradient cost no higher

than that of FL training.

4.3 Performance of Multiple Unlearning

Requests

In real-world settings, clients may continually launch unlearning re-
quests. Therefore, we go beyond existing work on FU and evaluate
the performance of QuickDrop with sequential class unlearning
requests. Figure 4 shows the accuracies when sequentially unlearn-
ing all ten CIFAR-10 classes in random order. We observe that the
unlearning phase for each target class results in low testing accu-
racy as before. Although the accuracies of non-target classes also
drop after the unlearning stage, they are rapidly restored in the re-
covery stages while leaving the low accuracy of the unlearned classes
unaffected. Therefore, Figure 4 shows the capability of QuickDrop
in executing multiple unlearning requests.

4.4 Sensitivity Analysis

We now experiment with the most important parameters of Quick-
Drop and analyze their sensitivity on the achieved accuracy and ef-
ficiency. We first explore the impact of doing additional fine-tuning
steps and then analyze the impact of the scale factor.

4.4.1 Impact of Fine-tuning. As discussed in Section 3.1, while
the synthetic samples are optimized for unlearning, they might not
perform sufficiently well during recovery. To offset this,QuickDrop
allows clients to perform additional fine-tuning steps (𝐹) to refine all
synthetic samples using the algorithm of Zhao et al. [49]. Figure 5
(left) shows the accuracy of QuickDrop on the R-Set after the
recovery stage when doing more fine-tuning (i.e., increasing 𝐹 from
0 to 200). We also show with a dashed horizontal line the accuracy
of Retrain-Or (74.95%), which we consider optimal. We observe
an increase in accuracy as 𝐹 increases: from 70.48% at 𝐹 = 0 to
74.55% at 𝐹 = 200. More fine-tuning, however, comes at the cost of
additional computation. Figure 5 (right) shows the total number of
gradient computations performed on the original CIFAR-10 dataset
for one client. This figure marks the portion of gradients generated
during FL training in orange, while the portion of gradients in gray
corresponds to the ones computed for fine-tuning. As 𝐹 increases to
200, the number of gradients computed for fine-tuning (10k) match

0

20

40

60

1 50 100 200 500 1000
Scale

A
cc

ur
ac

y
[%

]

1

10

100

1000

1 50 100 200 5001000
Scale

C
om

pu
te

 T
im

e
[s

.]

recovery
unlearn

Figure 6: The accuracy of the R-Set after recovery (left) and

the total compute time required for unlearning and recovery,

for different scales 𝑠.

that of FL training (10k). Consequently, with an extra gradient cost
no higher than that of FL training, QuickDrop clients can achieve
performance parity with Retrain-Or through fine-tuning.

4.4.2 Impact of the Scale Parameter. The scale parameter 𝑠 deter-
mines the ratio of original to synthetic samples per class and has a
key impact on the computational efficiency and accuracy of Quick-
Drop. We explore the impact of this parameter by varying 𝑠 from 1
to 1000, using the same setup as the experiment described in Sec-
tion 4.2 (with the CIFAR-10 dataset and 10 clients). Figure 6 (left)
shows the accuracy on the R-Set after recovery, for the considered
values of 𝑠 . As 𝑠 increases, the accuracy on the R-set after recovery
decreases. This is because increasing 𝑠 results in lower number of
synthetic samples and consequently more compression, inducing
difficulty in unlearning. This decrease in accuracy is less noticeable
when ranging 𝑠 between 1 and 200. With 𝑠 = 1 and 𝑠 = 100, we ob-
serve an accuracy of 72.67% and 70.48%, respectively. The accuracy
achieved when using only original samples is 74.83% (correspond-
ing to SGA-Or). However, for 𝑠 > 200, accuracy drops rapidly,
reaching just 54.69% at 𝑠 = 1000, where clients often have only one
synthetic sample per class. Nonetheless, for this experiment setting,
QuickDrop is able to retain high accuracies when 𝑠 ≤ 100.

Figure 6 (right) shows the total computation time (in logarithmic
scale) incurred by all clients to execute the unlearning and recovery
stages for different values of 𝑠 . As 𝑠 increases, the time to execute
these stages decreases significantly. For instance, while the unlearn-
ing time for 𝑠 = 1 is just over 8 minutes, it drops to only 5 seconds
for 𝑠 = 100 and as low as 1 second for 𝑠 = 1000. Similarly, the
recovery time decreases from 17.4minutes for 𝑠 = 1 to 10.6 seconds
for 𝑠 = 100. This decrease is because with an increasing value of 𝑠 ,
clients will have less samples, thus decreasing the compute costs.
Based on these results, we use 𝑠 = 100 in all our experiments which
achieves a good trade-off between accuracy and compute efficiency.

4.5 Performance in Larger Networks

We next analyze the unlearning performance of QuickDrop and
other baselines for class-level unlearning in a 100-client network
with the SVHN dataset [30]. Notably, our chosen network size sur-
passes the typical scale explored in related FU research [27, 41].
SVHN is a larger dataset compared to MNIST and CIFAR-10, con-
taining 10 classes and more than 600 000 samples. In each round, the
server selects a random 10% subset of clients to update the model

Middleware’24, December 02–06, 2024, Hong Kong, China Dhasade et al.

Table 3: The accuracy and computation cost of different FU

approaches with 100 clients on the SVHN dataset for class-
level unlearning. We report the performance when the algo-

rithm terminates i.e., after both unlearning and recovery.

Metric Accuracy Computation Cost
FU approach F-Set R-Set Time (s) Speedup
Retrain-Or 0.34% 88.39% 10483.51 1×
FedEraser 0.38% 82.98% 2447.80 4.28×
SGA-Or 0.66% 86.47% 1276.13 8.21×
FU-MP 0.73% 85.63% 1927.43 5.43×

QuickDrop 0.81% 84.96% 32.09 326.69×

during training and recovery, while the participation rate for un-
learning is 100%. Table 3 shows for each approach the accuracy on
the F-Set and R-Set when unlearning class 9. Even with 100 clients,
QuickDrop effectively unlearns class knowledge, achieving F-set
accuracy of 0.81% while Retrain-Or achieves 0.34%. Furthermore,
QuickDrop shows competitive accuracy on the R-Set (84.96%) com-
pared to the baselines (82.98 − 86.47%), despite the large number
of clients and samples in the training dataset. While Retrain-Or
achieves slightly higher R-Set accuracy (88.39%),QuickDrop shows
a massive 326.69× speedup over Retrain-Or.

4.6 Client-level Unlearning

Our previous evaluations focused on class-level unlearning. We
now evaluate the effectiveness of QuickDrop on client-level un-
learning where the goal is to erase the data samples of a specific
target client from the trained model. Support for client-level un-
learning is essential to adhere to privacy regulations such as the
right to be forgotten [12]. We remark that FU-MP cannot perform
client-level unlearning as it is specifically designed for class-level
unlearning. We report evaluations on the CIFAR-10 dataset using
two different data distributions: Non-IID (with 𝛼 = 0.1) and IID
(uniform distribution). The target unlearning client is randomly
selected.

Table 4 shows the performance of QuickDrop against baselines
after the unlearning and recovery stages terminate. We first dis-
cuss the non-IID scenario. We observe thatQuickDrop achieves
11.57% on the F-Set, remaining close to the oracle (10.48%) while
the baselines achieve 9.58 − 19.72%. Note that the F-Set accuracies
are higher than with class-level unlearning (see Table 2). This is
because even though we unlearned the data samples of a particular
client, some features associated with the data of the target client
might still be embedded in the model’s knowledge through other
clients. Therefore, even after unlearning, some forgotten samples
are correctly classified. Concerning the accuracy on the R-Set, Ta-
ble 4 shows that QuickDrop (70.89%) remains very competitive
with the baselines (69.85 − 72.63%) while the oracle achieves the
highest (73.69%). These results are consistent with the accuracies
obtained for class-level unlearning on non-IID data (Table 2).

In IID settings, we observe even higher accuracies on the F-Set
after unlearning and recovery. For example, Retrain-Or achieves
70.81%, whileQuickDrop reaches 68.59%. This is expected since,

Table 4: The accuracy of QuickDrop and other baselines

for client-level unlearning on CIFAR-10 (20 clients), with

non-IID (𝛼 = 0.1) and IID data distributions. We report the

performance after unlearning and recovery.

Distribution Non-IID (𝛼 = 0.1) IID
FU approach F-Set R-Set F-Set R-Set
Retrain-Or 10.48% 73.69% 70.81% 71.64%
FedEraser 16.57% 69.85% 65.29% 66.04%

S2U 19.72% 70.25% 70.63% 71.28%
SGA-Or 9.58% 72.63% 69.32% 70.25%

QuickDrop 11.57% 70.89% 68.59% 68.48%

with an IID distribution, each client holds a similar type and quan-
tity of data. Therefore, when we unlearn the target client, much
of its contributed knowledge is still represented by the remaining
data (R-Set) in the system, and the departure of the target client will
barely impact the model performance. We also explored the effect
of different 𝛼 values (𝛼 = 1, 10), alongside the reported 𝛼 = 0.1 and
IID cases. Our findings were consistent with previous observations
i.e., as heterogeneity decreases (larger 𝛼), the impact of forgetting
on final accuracy diminishes. Nevertheless, QuickDrop remains
competitive with the baselines and offers substantial computational
efficiency through synthetic data.

4.7 Performance of Relearning

This section provides additional accuracy results for single-class
unlearning requests with two datasets and a network size of 20
clients. Complementing the previously presented CIFAR-10 results
with 10 clients from Table 2, we include the remaining combinations
in the left (CIFAR-10 with 20 clients) and the right (MNIST with
20 clients) partitions of Table 5. All these experiments follow the
same setup as the results shown in Table 2. We further attach
the results of the relearning stage in each table partition to show
the effectiveness of different methods in relearning the eliminated
class. The approach used in the relearning stage is the same for
different baselines: we adopt traditional SGD-based model training
to update the unlearned model with the forget dataset 𝐷 𝑓 . Note
thatQuickDrop still uses the synthetic data in the relearning stage
while other baselines use the original data; QuickDrop thus can
still keep its superior computation efficiency.

We observe that the performance after unlearning and recovery
stages follows a similar trend as Table 2. In particular, almost all al-
gorithms achieve low accuracy on F-Set, similar to that of Retrain-
Or, demonstrating forgetting of the target class on both datasets.
Concerning the R-Set accuracy on CIFAR-10 dataset,QuickDrop
(65.78%) remains competitive with the baselines (67.38% − 70.04%)
while the oracle achieves 71.48%. This gap is much lower on the
MNIST dataset, where QuickDrop achieves 94.26% while the base-
lines and the oracle obtain 93.52% − 95.63%.

Table 5 also reports the accuracy on the F-Set and R-Set after
relearning. Ideally, we want these accuracies to be high since we
attempt to restore the model to the state before unlearning. Table 5
shows that all evaluated FU approaches successfully relearn the
previously eliminated knowledge again. On the MNIST dataset,

QuickDrop: Efficient Federated Unlearning via Synthetic Data Generation Middleware’24, December 02–06, 2024, Hong Kong, China

Table 5: The accuracies on the F-Set and R-Set after the unlearning + recovery and relearning stages, for the CIFAR-10 and

MNIST datasets with 20 clients and 𝛼 = 0.1. In each scenario, the goal is to match the performance of Retrain-Or on both the

F-Set and the R-Set.

Distribution CIFAR-10 (20 clients, 𝛼 = 0.1) MNIST (20 clients, 𝛼 = 0.1)
Stage Unlearning + Recovery Relearning Unlearning + Recovery Relearning

FU approach F-Set R-Set F-Set R-Set F-Set R-Set F-Set R-Set
Retrain-Or 0.68% 71.48% 78.65% 71.83% 0.47% 95.63% 96.82% 95.74%
FedEraser 0.22% 67.38% 70.48% 68.22% 0.23% 93.52% 95.86% 95.43%
SGA-Or 0.71% 70.04% 75.83% 69.75% 0.51% 95.03% 96.28% 95.18%
FU-MP 0.59% 69.82% — — 0.31% 94.83% — —

QuickDrop 0.69% 65.78% 74.39% 66.21% 0.44% 94.26% 96.37% 94.58%

QuickDrop achieves an accuracy of 96.37% on the F-Set and 94.58%
on the R-Set, almost matching Retrain-Or (96.82% and 95.74%). At
the same time,QuickDrop keeps its superiority in computation effi-
ciency since the relearning stage uses the compact synthetic dataset
(66.7× faster than Retrain-Or and 47.29× than SGA-Or). We are
unable to relearn using FU-MP. This is because model pruning irre-
versibly modifies the model structure, as described in Section 2.3.
In conclusion, QuickDrop demonstrates high versatility in not
only efficiently unlearning target classes but also relearning at low
computation cost.

4.8 Computational Overhead of QuickDrop

QuickDrop generates synthetic samples during the FL training
process, which incurs computational overhead. While we are able
to re-use the gradients on original data (∇L𝐷𝑖) computed by FL, we
are still required to compute gradients on the synthetic data (∇L𝑆𝑖)
and update the synthetic samples (line 14 and 15 in Algorithm 2)
during FL training. Table 6 shows the total and DD compute time for
the 3 different datasets used across our experiments. The total time
corresponds to the time required for FL training in QuickDrop,
which includes DD time. The DD time corresponds to the time
spent in executing line 14 and line 15 in Algorithm 2. We also
compute the overhead of DD as percentage of the total compute
time. Table 6 shows that the compute overhead of DD ranges around
50%, i.e., it doubles the FL training time. Although QuickDrop
slows down FL training, this initial investment is necessary to
unlock significant efficiency gains in downstream unlearning as
we showed previously.

Table 6: The total and DD compute time, and the overhead

of DD, for all three datasets used in our experiments.

Dataset

Total Compute

Time (s)

DD Compute

Time (s)

Overhead

MNIST 4735 2557 54%
CIFAR-10 5360 2948 55%
SVHN 9079 4204 46.3%

5 DISCUSSION

We now discuss certain aspects of our evaluation and algorithmic
aspects of QuickDrop that were not addressed before. We also
discuss two limitations of QuickDrop in Section 5.1.

Unlearning Metric. First, we highlight that developing new
metrics for unlearning is an active area of research [37]. While
accuracy might not fully capture true unlearning, our approach
aligns with SOTA FU work that reports unlearning via the accuracy
metric [13, 27, 38]. Additionally, we reported the MIA performance
to provide another metric for assessing unlearning.

Privacy of QuickDrop. We point out that the synthetically
generated data in QuickDrop does not leave the client’s device.
Clients only exchange model parameters with the server during
the unlearning and recovery phases. Hence, the privacy guarantees
for QuickDrop remain the same as standard FL.

Partial Client Participation. In FL with many clients, FL algo-
rithms usually have the parameter server choose a subset of clients
to participate in model training during each round [8].QuickDrop
supports such partial client participation during both FL training
and unlearning. Our SVHN experiments use a 10% participation
rate for FL training. Even though the clients participate and con-
sequently synthesize data only in a few rounds, the quality of
unlearning is good. This is because data synthesis aims to elimi-
nate only contributed knowledge, i.e., corresponding to the round
in which the client participated. Thus, this goal is met even with
partial participation. Partial participation during unlearning and
recovery is directly applicable inQuickDrop.

Frequency of Unlearning Requests. The computational ben-
efits of QuickDrop are closely tied to the frequency of unlearning
requests, i.e., the benefits in compute time are effectively realized as
there are more unlearning requests in the system. These requests
can arise from individual clients exercising their right to be for-
gotten or organisations needing to remove outdated or erroneous
data. QuickDrop requires an upfront investment in generating
the synthetic dataset, but these compute costs are then amortized
over the subsequent unlearning requests. Existing research on ma-
chine unlearning studies performance with hundreds of requests [3]
and highlights the importance of efficiently managing multiple re-
quests [46]. Recent work also proposes a streaming unlearning
setting involving a sequence of data removal requests [21]. We
thus anticipate a similar or even greater demand for efficiently

Middleware’24, December 02–06, 2024, Hong Kong, China Dhasade et al.

managing multiple unlearning requests when performing federated
unlearning.

5.1 Limitations

Finally, we discuss two limitations of our approach.
Sample-level Unlearning. In its current form,QuickDrop sup-

ports only class-level and client-level unlearning. These two levels
of unlearning already cover many applications of machine unlearn-
ing in federated setups. One might want to perform sample-level
unlearning, where the goal is to unlearn a subset of data samples
of a particular client. In QuickDrop, clients locally generate class-
wise synthetic data. Hence, one way to adaptQuickDrop to enable
sample-level unlearning is to consider subsets of data within each
class. One can generate synthetic samples for each subset and then
unlearn at the granularity of these subsets. We consider this chal-
lenge beyond the scope of current work and leave the exploration
of these ideas for future work.

Compute and Storage Overhead. QuickDrop prolongs the
training time for the original FL training, and requires additional
storage for the synthetic datasets. We have evaluated theQuick-
Drop compute overhead in Section 4.8, showing that this overhead
is between 46.3% and 55% in terms of prolonged training time and
on our evaluated datasets. The storage overhead of QuickDrop
depends on the scale parameter 𝑠 . Specifically,QuickDrop incurs
for each client an overhead of 1

𝑠 of the size of the local training
dataset. In Section 4.4.2, we have experimentally shown that de-
creasing the scale increases the size of the synthetic dataset but
allows for more accurate unlearning. We find 𝑠 = 100 to yield a
reasonable balance between efficiency and effectiveness and use
this value across all our experiments. This results in 1% storage
overhead forQuickDrop.

6 RELATEDWORK

We now discuss related work in the domain of machine and feder-
ated unlearning (Section 6.1) and dataset distillation (Section 6.2).

6.1 Machine and Federated Unlearning

Following the introduction of MU in [6], several algorithms have
been proposed [3, 11, 15, 17, 18, 20]. These works focus mainly on
unlearning knowledge from simple classification models, e.g., for
logistic regression, but are unsuitable for more complex models,
e.g., deep neural networks. Some algorithms have other restrictions
and can only be applied to specific model architectures or scenarios,
e.g., [4] only fits random forests model and [31] is only for Bayesian
learning. In traditional machine learning scenarios, all the local data
of clients will be uploaded to the server for centralized management,
so the server has a high level of flexibility to conduct arbitrary
operations on all data. Therefore, various unlearning techniques
(e.g., ensemble learning for data splitting [3] or gradient amnesia
of arbitrary batch [19]) are designed to operate in settings where
training data is readily available. Such operations at data-level are
not possible in FU, thus FU is more difficult than MU as outlined
in Section 2.1. Besides the FU methods covered in Section 2.3, other
recent approaches include [23, 43]. These works are not adopted as
baselines either because they employ a similar unlearning technique
as one of our baselines (e.g., [23] is built upon SGA) or are tailored

to specific scenarios (e.g., [43] focuses on recommendation systems).
Finally, among the very few theoretical works on FU, [36] tackle
both communication efficiency and provable exact unlearning by
leveraging total variation stability.

6.2 Dataset Distillation

Standard DD aims to replace a large training dataset with a sig-
nificantly smaller one that can achieve the same generalization
performance as the original training data [40]. DD can potentially
speed up downstream tasks such as continual learning [22] and neu-
ral architecture search [32]. DD also has been previously leveraged
in one-shot FL to significantly reduce communication cost com-
pared to multi-round FL [35, 50]. Early DD approaches are based
on core-set selection i.e., identifying a subset of influential samples
during training [1, 34]. Another class of algorithms synthesizes a set
of new samples from the original dataset. The approach described
in [49] is to match the gradients of a model trained on the origi-
nal and synthetic data. Follow-up work has introduced distillation
techniques based on trajectory gradient matching [7], differential
data augmentation functions [47], distribution matching [48] and
feature alignment [39]. While existing DD methods achieve leading
performance, synthesizing samples targeted at generalization is
highly compute intensive [45].QuickDrop, in contrast, formulates
DD for unlearning and synthesizes samples at lower computational
overhead.

7 CONCLUSION

We introducedQuickDrop, a novel and efficient federated unlearn-
ing method in which clients generate and use synthetic datasets
for unlearning. These synthetic datasets are a compact represen-
tation of the gradient information generated during training. To
unlearn specific samples, clients execute stochastic gradient as-
cent (SGA) with synthetic dataset instead of the original training
data. Recovery on remaining samples also takes place via synthetic
datasets. Empirical evaluations using three standard datasets and
SOTA baselines confirm the effectiveness and efficiency of Quick-
Drop, demonstrating a remarkable acceleration in the unlearning
process compared to existing federated unlearning approaches.

ACKNOWLEDGMENTS

This work has been funded by the Swiss National Science Foun-
dation, under the project “FRIDAY: Frugal, Privacy-Aware and
Practical Decentralized Learning”, SNSF proposal No. 10.001.796.
This work was also supported by fundings from the Key-Area Re-
search and Development Program of Guangdong Province (No.
2021B0101400003), Hong Kong RGC Research Impact Fund (No.
R5060-19, No. R5034-18, No. R5011-23), Areas of Excellence Scheme
(AoE/E-601/22-R), General Research Fund (No. 152203/20E, 152244/
21E, 152169/22E, 152228/23E), Collaborative Research Fund (No.
8730102).

REFERENCES

[1] Olivier Bachem, Mario Lucic, and Andreas Krause. Practical coreset constructions
for machine learning. arXiv preprint arXiv:1703.06476, 2017.

[2] Aurélien Bellet, Rachid Guerraoui, Mahsa Taziki, and Marc Tommasi. Personal-
ized and private peer-to-peer machine learning. In ICAIS, pages 473–481. PMLR,
2018.

QuickDrop: Efficient Federated Unlearning via Synthetic Data Generation Middleware’24, December 02–06, 2024, Hong Kong, China

[3] Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hen-
grui Jia, Adelin Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine
unlearning. In 2021 IEEE Symposium on Security and Privacy (SP), pages 141–159.
IEEE, 2021.

[4] Jonathan Brophy and Daniel Lowd. Machine unlearning for random forests. In
International Conference on Machine Learning, pages 1092–1104. PMLR, 2021.

[5] California State Legislature. California consumer privacy act of 2018. California
Legislative Information, 2018. Available online: https://leginfo.legislature.ca.gov/
faces/billTextClient.xhtml?bill_id=201720180AB375.

[6] Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine
unlearning. In 2015 IEEE symposium on security and privacy, pages 463–480. IEEE,
2015.

[7] George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and
Jun-Yan Zhu. Dataset distillation by matching training trajectories. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
4750–4759, 2022.

[8] Zachary Charles, Zachary Garrett, Zhouyuan Huo, Sergei Shmulyian, and Vir-
ginia Smith. On large-cohort training for federated learning. Advances in neural
information processing systems, 34:20461–20475, 2021.

[9] Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert,
and Yang Zhang. When machine unlearning jeopardizes privacy. In Proceedings
of the 2021 ACM SIGSAC conference on computer and communications security,
pages 896–911, 2021.

[10] Vikram S Chundawat, Ayush K Tarun, Murari Mandal, and Mohan Kankanhalli.
Zero-shot machine unlearning. IEEE Transactions on Information Forensics and
Security, 2023.

[11] Min Du, Zhi Chen, Chang Liu, Rajvardhan Oak, and Dawn Song. Lifelong
anomaly detection through unlearning. In Proceedings of the 2019 ACM SIGSAC
conference on computer and communications security, pages 1283–1297, 2019.

[12] European Union. Regulation (eu) 2016/679 of the european parliament and of
the council of 27 april 2016 on the protection of natural persons with regard
to the processing of personal data and on the free movement of such data, and
repealing directive 95/46/ec (general data protection regulation). Official Journal
of the European Union, 2018. OJ L 119, 4.5.2016, p. 1–88.

[13] Xiangshan Gao, Xingjun Ma, Jingyi Wang, Youcheng Sun, Bo Li, Shouling Ji,
Peng Cheng, and Jiming Chen. Verifi: Towards verifiable federated unlearning.
arXiv preprint arXiv:2205.12709, 2022.

[14] Spyros Gidaris and Nikos Komodakis. Dynamic few-shot visual learning without
forgetting. In CVPR, pages 4367–4375, 2018.

[15] Antonio Ginart, Melody Guan, Gregory Valiant, and James Y Zou. Making ai
forget you: Data deletion in machine learning. Advances in neural information
processing systems, 32, 2019.

[16] Aditya Golatkar, Alessandro Achille, Avinash Ravichandran, Marzia Polito, and
Stefano Soatto. Mixed-privacy forgetting in deep networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 792–801,
2021.

[17] Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the
spotless net: Selective forgetting in deep networks. In CVPR, pages 9304–9312,
2020.

[18] Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Forgetting outside
the box: Scrubbing deep networks of information accessible from input-output
observations. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XXIX 16, pages 383–398. Springer, 2020.

[19] Laura Graves, Vineel Nagisetty, and Vijay Ganesh. Amnesiac machine learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages
11516–11524, 2021.

[20] Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van Der Maaten. Certi-
fied data removal from machine learning models. arXiv preprint arXiv:1911.03030,
2019.

[21] Varun Gupta, Christopher Jung, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi,
and Chris Waites. Adaptive machine unlearning. Advances in Neural Information
Processing Systems, 34:16319–16330, 2021.

[22] Raia Hadsell, Dushyant Rao, Andrei A Rusu, and Razvan Pascanu. Embracing
change: Continual learning in deep neural networks. Trends in cognitive sciences,
24(12):1028–1040, 2020.

[23] Anisa Halimi, Swanand Kadhe, Ambrish Rawat, and Nathalie Baracaldo. Fed-
erated unlearning: How to efficiently erase a client in fl? arXiv preprint
arXiv:2207.05521, 2022.

[24] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of
non-identical data distribution for federated visual classification. arXiv preprint
arXiv:1909.06335, 2019.

[25] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features
from tiny images. 2009.

[26] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun.
com/exdb/mnist/, 1998.

[27] Gaoyang Liu, Xiaoqiang Ma, Yang Yang, Chen Wang, and Jiangchuan Liu. Fed-
eraser: Enabling efficient client-level data removal from federated learningmodels.
In 2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS),

pages 1–10. IEEE, 2021.
[28] Mohammad Saeid Mahdavinejad, Mohammadreza Rezvan, Mohammadamin

Barekatain, Peyman Adibi, Payam Barnaghi, and Amit P Sheth. Machine learn-
ing for internet of things data analysis: A survey. Digital Communications and
Networks, 4(3):161–175, 2018.

[29] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. Communication-efficient learning of deep networks
from decentralized data. In AISTATS, pages 1273–1282. PMLR, 2017.

[30] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and An-
drew Y Ng. Reading digits in natural images with unsupervised feature learning.
2011.

[31] Quoc Phong Nguyen, Bryan Kian Hsiang Low, and Patrick Jaillet. Varia-
tional bayesian unlearning. Advances in Neural Information Processing Systems,
33:16025–16036, 2020.

[32] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang
Chen, and Xin Wang. A comprehensive survey of neural architecture search:
Challenges and solutions. ACM Computing Surveys (CSUR), 54(4):1–34, 2021.

[33] Nicolò Romandini, Alessio Mora, Carlo Mazzocca, Rebecca Montanari, and Paolo
Bellavista. Federated unlearning: A survey on methods, design guidelines, and
evaluation metrics. arXiv preprint arXiv:2401.05146, 2024.

[34] Ozan Sener and Silvio Savarese. Active learning for convolutional neural net-
works: A core-set approach. In International Conference on Learning Representa-
tions, 2018.

[35] Rui Song, Dai Liu, Dave Zhenyu Chen, Andreas Festag, Carsten Trinitis, Martin
Schulz, and Alois Knoll. Federated learning via decentralized dataset distillation
in resource-constrained edge environments. In 2023 International Joint Conference
on Neural Networks (IJCNN), pages 1–10, 2023.

[36] Youming Tao, Cheng-Long Wang, Miao Pan, Dongxiao Yu, Xiuzhen Cheng, and
Di Wang. Communication efficient and provable federated unlearning. Proc.
VLDB Endow., 17(5):1119–1131, May 2024.

[37] Eleni Triantafillou, Peter Kairouz, Fabian Pedregosa, Jamie Hayes, Meghdad Kur-
manji, Kairan Zhao, Vincent Dumoulin, Julio Jacques Junior, Ioannis Mitliagkas,
Jun Wan, et al. Are we making progress in unlearning? findings from the first
neurips unlearning competition. arXiv preprint arXiv:2406.09073, 2024.

[38] Junxiao Wang, Song Guo, Xin Xie, and Heng Qi. Federated unlearning via class-
discriminative pruning. In Proceedings of the ACM Web Conference 2022, pages
622–632, 2022.

[39] Kai Wang, Bo Zhao, Xiangyu Peng, Zheng Zhu, Shuo Yang, Shuo Wang, Guan
Huang, Hakan Bilen, Xinchao Wang, and Yang You. Cafe: Learning to condense
dataset by aligning features. In CVPR, pages 12196–12205, 2022.

[40] Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset
distillation. arXiv preprint arXiv:1811.10959, 2018.

[41] Leijie Wu, Song Guo, Junxiao Wang, Zicong Hong, Jie Zhang, and Yaohong Ding.
Federated unlearning: Guarantee the right of clients to forget. IEEE Network,
36(5):129–135, 2022.

[42] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine
learning: Concept and applications. ACM TIST, 10(2):1–19, 2019.

[43] Wei Yuan, Hongzhi Yin, Fangzhao Wu, Shijie Zhang, Tieke He, and Hao Wang.
Federated unlearning for on-device recommendation. In Proceedings of the Six-
teenth ACM International Conference on Web Search and Data Mining, pages
393–401, 2023.

[44] Haibo Zhang, Toru Nakamura, Takamasa Isohara, and Kouichi Sakurai. A review
on machine unlearning. SN Computer Science, 4(4):337, 2023.

[45] Lei Zhang, Jie Zhang, Bowen Lei, Subhabrata Mukherjee, Xiang Pan, Bo Zhao,
Caiwen Ding, Yao Li, and Dongkuan Xu. Accelerating dataset distillation via
model augmentation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 11950–11959, 2023.

[46] Zijie Zhang, Yang Zhou, Xin Zhao, Tianshi Che, and Lingjuan Lyu. Prompt certi-
fied machine unlearning with randomized gradient smoothing and quantization.
Advances in Neural Information Processing Systems, 35:13433–13455, 2022.

[47] Bo Zhao and Hakan Bilen. Dataset condensation with differentiable siamese
augmentation. In International Conference on Machine Learning, pages 12674–
12685. PMLR, 2021.

[48] Bo Zhao and Hakan Bilen. Dataset condensation with distribution matching.
In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 6514–6523, 2023.

[49] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with
gradient matching. In International Conference on Learning Representations, 2021.

[50] Yanlin Zhou, George Pu, XiyaoMa, Xiaolin Li, and DapengWu. Distilled one-shot
federated learning. arXiv preprint arXiv:2009.07999, 2020.

[51] Hangyu Zhu, Jinjin Xu, Shiqing Liu, and Yaochu Jin. Federated learning on
non-iid data: A survey. Neurocomputing, 465:371–390, 2021.

[52] Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. Data-free knowledge distillation
for heterogeneous federated learning. In ICML, pages 12878–12889. PMLR, 2021.

https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375

	Abstract
	1 Introduction
	2 Background and Problem Setup
	2.1 Machine and Federated Unlearning
	2.2 Problem Setup
	2.3 Existing FU Algorithms and their Drawbacks

	3 Design of QuickDrop
	3.1 Synthetic Data Generation for Efficient Unlearning
	3.2 Formulating the Distillation Task
	3.3 Enhancing Recovery for SGA
	3.4 End-to-end Workflow of QuickDrop

	4 Evaluation
	4.1 Experimental Setup
	4.2 Performance of a Single Unlearning Request
	4.3 Performance of Multiple Unlearning Requests
	4.4 Sensitivity Analysis
	4.5 Performance in Larger Networks
	4.6 Client-level Unlearning
	4.7 Performance of Relearning
	4.8 Computational Overhead of QuickDrop

	5 Discussion
	5.1 Limitations

	6 Related Work
	6.1 Machine and Federated Unlearning
	6.2 Dataset Distillation

	7 Conclusion
	Acknowledgments
	References

