
Leveraging Approximate Caching for Faster

Retrieval-Augmented Generation

Shai Bergman
Huawei Research
Zurich, Switzerland

Zhang Ji
Huawei Research
Zurich, Switzerland

Anne-Marie Kermarrec
EPFL

Lausanne, Switzerland

Diana Petrescu
EPFL

Lausanne, Switzerland

Rafael Pires
EPFL

Lausanne, Switzerland

Mathis Randl∗
EPFL

Lausanne, Switzerland

Martijn de Vos
EPFL

Lausanne, Switzerland

Abstract

Retrieval-augmented generation (RAG) enhances the relia-
bility of large language model (LLM) answers by integrating
external knowledge. However, RAG increases the end-to-
end inference time since looking for relevant documents
from large vector databases is computationally expensive.
To address this, we introduce Proximity, an approximate
key-value cache that optimizes the RAG workflow by lever-
aging similarities in user queries. Instead of treating each
query independently, Proximity reuses previously retrieved
documents when similar queries appear, reducing reliance
on expensive vector database lookups. We evaluate Proxim-
ity on the MMLU and MedRAG benchmarks, demonstrat-
ing that it significantly improves retrieval efficiency while
maintaining response accuracy. Proximity reduces retrieval
latency by up to 59% while maintaining accuracy and lowers
the computational burden on the vector database. We also
experiment with different similarity thresholds and quantify
the trade-off between speed and recall. Our work shows that
approximate caching is a viable and effective strategy for
optimizing RAG-based systems.

CCS Concepts: • Information systems→Retrieval mod-

els and ranking; • Computing methodologies→ Natu-

ral language generation.

Keywords: Retrieval-AugmentedGeneration, Large Language
Models, Approximate Caching, Neural Information Retrieval,

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1538-9/25/03
https://doi.org/10.1145/3721146.3721941

Vector Databases, Query Optimization, Latency Reduction,
Machine Learning Systems

ACM Reference Format:

Shai Bergman, Zhang Ji, Anne-Marie Kermarrec, Diana Petrescu,
Rafael Pires, Mathis Randl, and Martijn de Vos. 2025. Leveraging
Approximate Caching for Faster Retrieval-Augmented Generation.
In The 5th Workshop on Machine Learning and Systems (EuroMLSys

’25), March 30–April 3, 2025, Rotterdam, Netherlands. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3721146.3721941

1 Introduction

Large language models (LLMs) have revolutionized natural
language processing by demonstrating strong capabilities in
tasks such as text generation, translation, and summariza-
tion [1]. Despite their increasing adoption, a fundamental
challenge is to ensure the reliability of their generated re-
sponses [2]. A particular issue is that LLMs are prone to hallu-
cinationswhere they confidently generate false or misleading
information, which limits their applicability in high-stake
domains such as healthcare [3]. Moreover, their responses
can be inconsistent across queries, especially in complex or
specialized domains, making it difficult to trust their outputs
without extensive verification by domain experts [2, 4].

Retrieval-augmented generation (RAG) is a popular ap-
proach to improve the reliability of LLM answers [5]. RAG
combines the strengths of neural network-based generation
with external information retrieval. This technique first re-
trieves relevant documents from an external database based
on the user prompt and appends them to the user prompt be-
fore generating a response. RAG aids the LLM to use vetted,
flexible sources of information without the need to modify
the model parameters through retraining or fine-tuning [6].
Both user queries and documents are often represented as
high-dimensional embedding vectors, capturing semantic
meanings, and these embeddings are stored in a vector data-
base. Retrieving relevant documents involves finding em-
beddings in the database closest to the query embedding, a
process known as nearest neighbor search (NNS). NNS, how-
ever, becomes computationally expensive for large vector
databases [7, 8]. Thus, RAG can significantly prolong the
inference end-to-end time [9].

https://doi.org/10.1145/3721146.3721941
https://doi.org/10.1145/3721146.3721941

EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Bergman et al.

To mitigate the latency increase of NNS, we observe that
user query patterns to conversational agents often exhibit
spatial and temporal locality, where specific topics may ex-
perience heightened interest within a short time span [10].
Similar queries are likely to require and benefit from the same
set of retrieved documents in such cases. Leveraging this,
we propose reducing the database load by reusing recently
retrieved results for similar past prompts. This approach
contrasts with conventional RAG systems that treat queries
independently without exploiting access patterns. However,
exact embedding matching is ineffective when queries are
phrased slightly differently, as their embeddings are unlikely
tomatch precisely.We introduce a novel approximate caching

mechanism incorporating a similarity threshold to address
this. Approximate caching allows for some level of tolerance
when determining relevant cache entries.

This work introduces Proximity, a novel approximate
key-value cache specifically designed for RAG-based LLM
systems. By intercepting queries before they reach the vec-
tor database and leveraging previously retrieved results for
similar queries, Proximity reduces the computational cost
of NNS and minimizes database accesses, effectively low-
ering the overall end-to-end inference latency of the RAG
pipeline. Specifically, we store past document queries in an
approximate key-value cache, where the key corresponds to
the embedding of a previous query, and the value is the set
of relevant documents retrieved for that query. When a new
query is received, the cache checks if it is sufficiently similar
to any of the keys. If so, the corresponding documents are
returned, bypassing the need for a database lookup. If not,
the database is queried for new results, the cache is updated
with the new query, and the RAG pipeline proceeds as usual.
The main technical challenge that this work addresses is
the design and parametrization of the cache, as there is an
inherent trade-off between accuracy and performance.

We implement Proximity and evaluate our system using
theMassiveMultitask Language Understanding (MMLU) [11]
and MedRAG [12] benchmarks, which are commonly used
to evaluate RAG frameworks. Our results show significant
speed improvements while maintaining retrieval accuracy.
Specifically, we find that Proximity reduces the latency of
document retrieval by up to 59% for MMLU and 70.8% for
MedRAG with no or only a marginal decrease in accuracy.
These results highlight the viability and effectiveness of us-
ing approximate caching to improve the speed of RAG-based
LLM systems.

Our contributions are as follows:

• We introduce Proximity, a novel approximate key-
value caching mechanism for RAG pipelines that lever-
ages spatial and temporal similarities in user queries to
reduce the overhead of document retrieval (Section 3).

Data

Retriever LLM

User 3

5

6
7

Query Query

Search

Retrieve
documents

Response

Vector
Database

Embedding
Model

1

2

8

Chunks

Indexing

Embedding
Model 3

4
Embedding

Figure 1. The RAG workflow.

Proximity includes a similarity-based caching strat-
egy that significantly lowers retrieval latency while
maintaining high response quality.
• We evaluate Proximity using two standard bench-
marks, demonstrating substantial improvements in
cache hit rates and query latency while maintaining
comparable accuracies (Section 4). We compare Prox-
imity against RAG-based solutions without such an
approximate caching mechanism. We systematically
analyze the impact of the cache capacity and similarity
tolerance, providing insights into optimizing retrieval
performance for workloads with differing characteris-
tics.

2 Background and preliminaries

We first detail the RAG workflow (Section 2.1) and then
outline the process to retrieve the documents relevant to a
user query (Section 2.2).

2.1 Retrieval-augmented generation

Retrieval-augmented generation (RAG) is a technique that
enhances the capabilities of LLMs by integrating information
retrieval before the generation process [5]. RAG typically
enables higher accuracy in benchmarks with a factual ground
truth, such as multiple-choice question answering [13].

Figure 1 shows the RAG workflow that consists of the fol-
lowing eight steps. Before LLM deployment, raw data (e.g.,
documents or videos) are first converted into chunks, and
each of these chunks is converted into a high-dimensional
embedding vector using an embedding model (step 1) and
stored in a vector database (2). When the user queries the
LLM (3), this query is first converted to an embedding vector
using the same embedding model as used for the indexing
and passed to the retriever (4). The vector database then
searches for embeddings close to the query embedding (e.g.,
using some distance metric, step 5) and returns the relevant
data chunks related to this embedding (6). These data chunks
and the user query are combined into a single prompt and
passed to the LLM (3 and 7). The LLM response is then re-
turned to the user (8).

Leveraging Approximate Caching for Faster Retrieval-Augmented Generation EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

Vector
DB

Assets

Query
Embedding

Neighbor Vector
Indices

q1

... ...

... ...

... ...

1
q1

2
Lookup

R
etriever

PROXIMITY cache

3 9 124

3 4 9 12

3 4 9 12

miss

q2
5

hit

4

6

3 4 9 12

3
Fill cache

Figure 2. The design and workflow of the Proximity approx-
imate cache when receiving two subsequent, similar query
embeddings 𝑞1 and 𝑞2. 𝑞1 results in a cache miss whereas 𝑞2
results in a hit, returning similar document indices as for 𝑞1.

2.2 RAG vector search

The vector search during the RAG workflow (step 5) obtains
relevant embeddings from a vector database based on the
embedding vector of the user query. Vector databases are
databases that potentially store a vast amount of𝑛-dimensional
real-valued vectors and are optimized to solve the nearest
neighbor search (NNS), i.e., finding the 𝑘 elements contained
in the database that are the closest to a given query [14]. The
similarity metric to be minimized is typically L2, cosine, or
inner-product, and is fixed before deployment. This lookup
returns a ranked list of indices corresponding to resulting
embeddings, and these indices can then be used to obtain
the data chunks that will be sent along with the user prompt
to the LLM.
Due to the high dimensionality of embeddings and the

sheer volume of data in modern vector databases [15], per-
forming vector searches at scale poses significant compu-
tational challenges. NNS requires comparing query embed-
dings with millions or billions of stored vectors, which be-
comes expensive as the database grows [16]. Even with opti-
mized index structures such as asHNSW [17] or quantization-
based approaches [18], maintaining low-latency retrieval
while ensuring high recall remains difficult.

3 Design of Proximity

We mitigate the efficiency challenges associated with NNS
during RAG by designing a caching mechanism that reduces
the need for repeated NNSs by reusing previously retrieved
results for similar queries. Our design is motivated by the ob-
servation that user queries with conversational LLM agents
show spatial and temporal similarities [10]. However, tradi-
tional caching mechanisms, such as exact key-value stores,
are ineffective in the context of vector search due to the
nature of embeddings. User queries rarely produce identical
embeddings due to small variations in input phrasing, mak-
ing exact caches inefficient, as lookups would almost never
result in cache hits.

Instead, we leverage approximate caching in the context of
RAG document retrieval. Even if the data chunks retrieved

Algorithm 1: Proximity Search
State : similarity tolerance 𝜏 , cache capacity 𝑐 ,

vector database D, cache state C = {}
1

2 Procedure lookup(𝑞):

3 𝑑 = [distance(𝑞,𝑘) for 𝑘 in C.keys]
4 (𝑘𝑒𝑦,𝑚𝑖𝑛_𝑑𝑖𝑠𝑡) ←𝑚𝑖𝑛(𝑑)
5 if 𝑚𝑖𝑛_𝑑𝑖𝑠𝑡 ≤ 𝜏 then

6 return C[𝑘𝑒𝑦]
7 I ← D.retrieveDocumentIndices(𝑞)
8 if |C| ≥ 𝑐 then

9 // Evict an entry if cache is full

10 C.evictOneEntry()
11 C[𝑞] ← I
12 return I // Return retrieved indices

for a given query are not the most optimal results that would
have been obtained from a full database lookup, they can
still provide valuable context and relevant information for
the LLM, allowing the system to maintain good accuracy
while reducing retrieval latency. Our approximate cache is
parameterized with a similarity threshold 𝜏 . If the distance
between two query embeddings 𝑞1 and 𝑞2 is equal to or less
than 𝜏 , we consider these embeddings alike and return simi-
lar data chunks if they are available in the cache. Cache hits
thus bypass more expensive vector database searches. The
technical challenge lies in defining an effective similarity
threshold that maximizes cache hits without compromising
response relevance and finding the optimal cache size that
enables high cache coverage while still being computation-
ally attractive.

We now present the design of Proximity, an approximate
key-value cache designed to accelerate RAG pipelines. Prox-
imity is agnostic of the specific vector database being used
but assumes that this database has a lookup function that
takes as input a query embedding and returns a sorted list of
indices of vectors that are close to the query. In the following,
we first present the high-level process overview of retrieving
vectors with Proximity (Section 3.1). We then elaborate on
the parameters and components of our caching mechanism
(Section 3.2).

3.1 Retrieving relevant documents with Proximity

The high-level algorithm is described in Algorithm 1. We
also visualize the Proximity cache and workflow in Figure 2
with an example when sending two subsequent similar query
embeddings 𝑞1 and 𝑞2. Each key in the cache corresponds
to an embedding previously queried, while the associated
value is a list of the top-𝑘 nearest neighbors retrieved from
the database during a previous query. The cache has a fixed

EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Bergman et al.

capacity of 𝑐 entries, which implies that, when full, an evic-
tion policy is applied to make room for new entries (see
Section 3.2.2).
When a user initiates a query, it is first converted into

an embedding vector by an embedding model. The retriever
(left in Figure 2) then forwards this query embedding, de-
noted as 𝑞1, to the Proximity cache (step 1 in Figure 2).
Proximity first checks whether a similar query has been
recently processed by iterating over each key-value pair (𝑘 ,𝑣)
of cache entries (line 3 in Algorithm 1). If the best match is
sufficiently close to the query, i.e., the distance between 𝑞

and 𝑘 is lower than some threshold 𝜏 , the associated retrieval
results are returned immediately (Lines 4-6), thus bypassing
the vector database. Otherwise, the system proceeds with
a standard database query (Line 7 in Algorithm 1). This is
step 2 in Figure 2 where we perform a lookup with 𝑞1 and
the vector database. The Proximity cache is now updated
with the resulting neighbor vector indices (in blue) from the
database lookup (step 3). Since the number of cache entries
might exceed the cache size, the eviction policy will remove
a cache entry if necessary (Lines 9-10). The cache is now
updated with the result obtained from the database (Line 11).
Finally, the vector indices are returned to the retriever (step
4 in Figure 2). We adopt the same distance function as the
underlying vector database to ensure consistency between
the caching mechanism and the retrieval process.

When another query embedding 𝑞2 arrives (step 5 in Fig-
ure 2), with a low distance to 𝑞1, Proximity first checks if
it is sufficiently similar to any stored query embeddings in
the cache. Suppose the similarity score is below the prede-
fined similarity threshold 𝜏 . In that case, the cache returns
the previously retrieved document indices associated with
the closest matching query, thus bypassing a lookup in the
vector database (step 6). Depending on the specifications of
the cache and workload, our approach can reduce retrieval
latency and computational overhead, especially in workloads
with strong spatial or temporal similarities.

3.2 Proximity cache parameters and components

We now describe the parameters and components of the
Proximity cache and discuss their impact on performance.

3.2.1 Cache capacity 𝑐. The cache has a capacity of 𝑐 en-
tries, which dictates the number of entries it will fill before
starting to evict old entries (i.e., the number of rows in Fig-
ure 2). This parameter poses a trade-off between the cache
hit rate and the time it takes to scan the entire set of keys.
A larger cache increases the likelihood of cache hits, allow-
ing the system to reuse previously retrieved data chunks
more frequently and reducing the number of expensive vec-
tor database lookups. However, increasing the cache size
also incurs (i) computational overhead as the cache must be
searched for similarity matches on each query and (ii) mem-
ory overhead since additional key-value pairs need to be

stored. This computational overhead is manageable since the
cache size is small compared to the full vector database. Our
current implementation does a linear scan over the keys in
the Proximity cache, resulting in a linear compute overhead
as 𝑐 increases. Even with a full linear scan over the cached
keys, we found the overhead to be negligible when compared
to a database query.

3.2.2 Eviction policy. When the cache reaches its maxi-
mum capacity, an eviction policy is required to determine
which existing entry should be removed to make space for
new ones.While numerous eviction strategies exist, we opted
for the FIFO (first-in, first-out) policy. It evicts the oldest en-
try in the cache, irrespective of how often or recently it
has been accessed. FIFO provides a simple and predictable
replacement strategy.

3.2.3 Distance tolerance 𝜏 . We employ a fuzzy matching
strategy based on a predefined similarity threshold 𝜏 to deter-
mine whether a cached entry can be used for a given query.
This threshold defines the maximum allowable distance be-
tween a query embedding and a cached query embedding to
be considered similar. The choice of 𝜏 directly impacts recall
and overall RAG accuracy. A low 𝜏 value enforces stricter
matching, ensuring that retrieved data chunks are highly
relevant but potentially reducing the cache hit rate, limiting
the benefits of caching. We note that 𝜏 = 0 is equivalent
to using a cache with exact matching. Conversely, a higher
value of 𝜏 increases cache utilization by accepting looser
matches, improving retrieval speed at the potential cost of
including less relevant data chunks. In our experiments, 𝜏 is
treated as a global constant, manually set at the start of each
evaluation. However, one might consider adaptive strategies
to dynamically adjust 𝜏 based on the characteristics of the
data chunks stored or on the patterns of queries sent to the
system. Exploring such adaptive mechanisms could further
optimize retrieval efficiency.

4 Evaluation

We implement Proximity and evaluate the effectiveness of
our approximate cache using two standard benchmarks. Our
experiments quantify the effect of the cache capacity 𝑐 and
similarity tolerance 𝜏 on the accuracy, the cache hit rate, and
the latency required to retrieve documents.

4.1 Implementation details

We implement Proximity in the Rust programming language
for efficiency and publish its implementation 1. The first-in,
first-out (FIFO) eviction policy is implemented using a grow-
able ring buffer from the Rust standard collection. For vector

1https://github.com/sacs-epfl/proximity.

https://github.com/sacs-epfl/proximity

Leveraging Approximate Caching for Faster Retrieval-Augmented Generation EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

No cache 0.5 1 2 5 10

10

50

100

200

300

50.2 50.2 50.2 50.3 48.2 48.8
50.2 50.2 50 50 47.9 48.1
50.2 50.2 49.8 49.9 47.9 48.1
50.2 50.2 49.9 49.6 47.9 48.1
50.2 50.2 49.8 49.6 47.9 48.1

C
ac
he

ca
pa

ci
ty

(𝑐
)

(a) Test accuracy [%]

48

49

50

No cache 0.5 1 2 5 10

- 0.1 2.6 6.1 81.3 93
- 0.5 11.8 27.2 92.4 93
- 1.3 21.6 56.4 92.4 93
- 2.8 36.9 69.3 92.4 93
- 3.6 40.1 69.3 92.4 93

(b) Hit rate [%]

0

20

40

60

80

No cache 0.5 1 2 5 10

101.42 103.15 98.68 93.93 25.15 7.94
88.99 93.97 81.84 70.19 9.95 7.94
92.96 91.45 70.54 43.94 9.93 7.31
90.7 88.93 65.59 35.36 10.72 7.31
89.95 89.81 58.45 36.38 11.16 7.59

(c) Retrieval latency [ms]

20

40

60

80

100

No cache 2 5 10

10

50

100

200

300

87.1 87.1 87.5 39.3
87.1 87.1 87.5 36.6
87.1 87.1 88.1 36.6
87.1 87.4 87.5 36.6
87.1 87.4 87.5 36.6 40

60

80

No cache 2 5 10

- 0.8 3.8 98
- 3 20.3 98.4
- 5.8 42.1 98.4
- 12 72.6 98.4
- 15.9 73.3 98.4

Similarity tolerance (𝜏)

0

20

40

60

80

No cache 2 5 10

4,820 4,905 4,263 59
4,820 4,334 3,540 72
4,821 4,641 1,788 51
4,829 4,323 1,337 80
5,266 4,424 1,408 86

2,000

4,000

Darker is better
MMLU

MedRAG

Figure 3. The accuracy (left), cache hit rate (middle), and latency of document retrieval (right), for different cache capacities
and similarity tolerances, for the MMLU (top) and MedRAG (bottom) benchmarks.

comparisons, our implementation makes use of portable-
simd2, an experimental extension to the Rust language that
enables ISA-generic explicit SIMD operations.

We expose bindings from the Rust cache implementation
to the Python machine learning pipeline using PyO33 (Rust-
side bindings generation) and Maturin4 (Python-side pack-
age management). These bindings streamline the integration
of our cache into existing RAG pipelines.

4.2 Experimental setup

To evaluate Proximity, we adopt and modify two exist-
ing end-to-end RAG workflows, instruct-qa5, as well as
MedRAG6, both from previous work on LLM question an-
swering [12, 19]. In our setup, all vectors are stored in main
memory without serialization to disk, which enables low-
latency access to them. We leverage the FAISS library [20]
for efficient approximate nearest neighbor search. For the
LLM, we use the open-source LLaMA 3.1 Instruct model [21],
which is optimized for instruction-following tasks.

Document source. For the MMLU benchmark, we use
the wiki_dpr dataset as a document source, which contains
21million passages collected fromWikipedia. The index used
is FAISS-HNSW, a graph-based indexing structure optimized
for fast and scalable approximate nearest neighbor (ANN)
search. For MedRAG, we use PubMed, which contains 23.9M
medical publication snippets, and the vector database is
served using FAISS-Flat. For both wiki_dpr and PubMed,
we embed each passage as a 768-dimensional vector.

2https://github.com/rust-lang/portable-simd
3https://docs.rs/pyo3/latest/pyo3/.
4https://www.maturin.rs.
5https://github.com/sacs-epfl/instruct-qa-proximity.
6https://github.com/sacs-epfl/medrag-proximity.

Queries. We construct and evaluate prompts using a
subset of the Massive Multitask Language Understanding
(MMLU) and PubMedQA datasets. MMLU is a comprehen-
sive benchmark designed to evaluate the knowledge and rea-
soning of LLMs across a wide array of subjects [11]. MMLU
is frequently used to evaluate the effectiveness of RAG, and
we leverage the subset of questions on the topic of econo-
metrics, containing 131 total questions. We specifically pick
this subset because it highly benefits from RAG. Similarly,
we select at random 200 vectors from PubMedQA to serve
as user queries.
To simulate similarity, we generate four variants of each

question by adding some small textual prefix to them and
we randomize the order of the resulting 524 questions for
MMLU and 800 for MedRAG.
Hardware. We launch our experiments in Docker con-

tainers, using 12 cores of an Intel Xeon Gold 6240 CPU and
300GB of allocated RAM per container.
Metrics. Our evaluation focuses on three performance

metrics: (i) The test accuracy of the entire RAG system, which
is computed as the percentage of multiple-choice questions
answered correctly by the LLM; (ii) The cache hit rate, which
is defined as the percentage of queries that find a sufficiently
similar match in the cache; (iii) The retrieval latency, which
is the time required to retrieve the relevant data chunks,
including both cache lookups and vector database queries
where necessary.

To ensure statistical robustness, we run each experiment
five times and with different random seeds. We average all
results and omit standard deviations as they are negligible.

4.3 Results

Our evaluation examines the impact of the cache capacity
𝑐 and similarity tolerance 𝜏 on the three metrics described

https://github.com/rust-lang/portable-simd
https://docs.rs/pyo3/latest/pyo3/
https://www.maturin.rs
https://github.com/sacs-epfl/instruct-qa-proximity
https://github.com/sacs-epfl/medrag-proximity

EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Bergman et al.

above. We evaluate these metrics across different cache ca-
pacities 𝑐 ∈ {10, 50, 100, 200, 300} for both benchmarks. We
experiment with tolerance levels 𝜏 ∈ {0, 0.5, 1, 2, 5, 10} for
MMLU and 𝜏 ∈ {0, 2, 5, 10} for MedRAG. Figure 3 shows all
results.

4.3.1 Accuracy. Figure 3 (left) indicates that accuracy re-
mains relatively stable across different combinations of 𝑐 and
𝜏 , with values ranging between 47.9% and 50.2% for MMLU
(top row). Accuracy is slightly higher for low similarity tol-
erances 𝜏 = 0 (no cache) and 𝜏 = 0.5: approximately 50.2%.
Increasing 𝜏 slightly degrades accuracy, bringing it closer to
48.1%. This is because a higher similarity tolerance increases
the likelihood of including irrelevant data chunks in the LLM
prompt, negatively affecting accuracy. We observe similar
behavior in MedRAG (second row), which shows a more pro-
nounced accuracy drop between 𝜏 = 5 (88%) and 𝜏 = 10 (37%)
for the same reason. Increasing 𝑐 can lower accuracy, e.g.,
in MMLU for 𝜏 = 1.0, accuracy lowers from 50.2% to 49.8%
when increasing 𝑐 from 10 to 300. Interestingly, the highest
observed accuracies of 50.3% (for 𝜏 = 3, 𝑐 = 10 in MMLU)
and 88.1% (for 𝜏 = 5, 𝑐 = 100 in MedRAG) are achieved
with caching. This serendipitously occurs because the ap-
proximately retrieved documents prove more helpful on the
MMLU benchmark than the closest neighbors retrieved from
the database without caching (𝜏 = 0). In both scenarios, the
cache rarely decreases accuracy to the level of the LLM with-
out RAG (48% for MMLU, 57% for MedRAG), except when 𝜏
is too high (e.g., 𝜏 = 10 for MedRAG).

4.3.2 Cache hit rate. Figure 3 (middle) shows the cache
hit rate for different values of 𝑐 and 𝜏 for both benchmarks.
Increasing 𝜏 increases the hit rate. For 𝜏 = 0, there are no
cache hits, as queries need to be equal to any previous query.
However, for 𝜏 ≥ 5, hit rates reach 93% (MMLU) and 98.4%
(MedRAG), demonstrating that higher tolerances allow the
cache to serve most queries without contacting the database.
In this scenario, the cache prefers to serve possibly irrelevant
data rather than contact the database. Nevertheless, even
with such high hit rates, there is only a minor decrease in ac-
curacy for MMLU. Similarly, in MedRAG, despite the larger
drop in accuracy, a hit rate of 72.6% (𝜏 = 5, 𝑐 = 200) sustains
an accuracy close to the upper bound. Increasing the cache
capacity significantly improves the hit rate, i.e., for MMLU,
𝜏 = 2, and when increasing 𝑐 from 10 to 300, the hit rate
increase from 6.1% to 69.3%.

4.3.3 Query latency. Figure 3 (right) shows the retrieval
latency for different values of 𝑐 and 𝜏 . Latency reductions are
significant for configurations with high cache hit rates. For
𝜏 = 0 (no cache) and a cache capacity of 10, retrieval latency
can be as high as 101ms (MMLU) and 4.8 s (MedRAG). Re-
trieval latency quickly decreases as 𝜏 increases, which aligns
with the increase in hit rate; more queries are now answered
with results from the cache. Furthermore, increasing 𝑐 also

decreases retrieval latency, particularly for higher values of
𝜏 . Finally, we remark that the speedup gains by Proximity
increase as the latency of vector database lookups increases.
While our implementation keeps all vector indices in main
memory, other database implementations such as DiskANN
(partially) store indices on the disk, which increases retrieval
latency when not using Proximity further [22]. Thus, such
implementations would highly benefit from the speedups
enabled by Proximity.

4.3.4 Experimental conclusion. Our findings demon-
strate that Proximity effectively reduces retrieval latency
while maintaining competitive accuracy. This makes approx-
imate caching a viable optimization for RAG pipelines in
scenarios where queries exhibit spatial and temporal similar-
ity. In practical deployments, however, tuning the tolerance
parameter and cache capacity based on workload character-
istics will be critical to balancing performance and accuracy.

5 Related work

Improving RAG latency. Various strategies have been pro-
posed to decrease the retrieval latency of RAG. Zhu et al.
propose Sparse RAG, an approach that encodes retrieved
documents in parallel, thereby eliminating delays associ-
ated with sequential processing [8]. Sparse RAG reduces
overhead of the LLM encoding stage. RAGServe is a system
that dynamically adjusts parameters, such as the number
of retrieved text chunks, for each query [23]. The system
balances response quality and latency by jointly schedul-
ing queries and adapting configurations based on individual
query requirements. PipeRAG integrates pipeline parallelism
and flexible retrieval intervals to accelerate RAG systems
through concurrent retrieval and generation processes [9].
RAGCache is a multilevel dynamic caching system that or-
ganizes intermediate states of retrieved knowledge into a
hierarchical structure, caching them across GPU and host
memory to reduce overhead [24]. TurboRAG reduces the
latency of the prefill phase by caching and reusing LLM key-
value caches [25]. Cache-Augmented Generation is a method
that preloads all relevant documents into a language model’s
extended context and precomputes key-value caches, thus
bypassing real-time retrieval during inference [26]. Specula-
tive RAG improves accuracy and reduces latency by using
a smaller LLM to generate multiple drafts in parallel from
subsets of retrieved documents [27]. The above systems op-
timize different aspects of the RAG workflow and many of
them are complementary to Proximity.
Similarity caching. Beyond RAG, caching mechanisms

have extensively been explored to improve retrieval effi-
ciency in information retrieval systems [28]. Similarity-based
caching techniques increase throughput and reduce retrieval
latency by exploiting knowledge of the query distribution
and content similarity [29, 30]. This has been leveraged in
different domains such as image retrieval [31], distributed

Leveraging Approximate Caching for Faster Retrieval-Augmented Generation EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

content networks [32] and recommendation systems [33].
Finally, Regmi et al. propose a semantic cache where user
queries are converted to embeddings and cached LLM re-
sponses are served for similar user queries [34]. Proximity,
on the other hand, focuses on the RAG document retrieval
by caching the retrieved documents.

6 Conclusion

We introduced Proximity, a novel caching mechanism de-
signed to enhance the efficiency of retrieval-augmented gen-
eration (RAG) systems. Our approach significantly reduces
retrieval latency while maintaining retrieval accuracy by
leveraging spatial and temporal similarities in user queries
to LLMs. Instead of treating each query as an independent
event, Proximity caches results from previous queries and
reuses them when similar queries appear. This caching re-
duces the computational load on the underlying vector data-
base and decreases the end-to-end latency of the overall
RAG pipeline. Our evaluation with the MMLU and MedRAG
benchmarks demonstrates that Proximity provides substan-
tial performance gains in scenarios where users repeatedly
query related topics. We conclude that our approximate
caching strategy effectively optimizes RAG pipelines, partic-
ularly in workloads with similar query patterns.

Acknowledgments

This work has been funded by the Swiss National Science
Foundation, under the project “FRIDAY: Frugal, Privacy-
Aware and Practical Decentralized Learning”, SNSF proposal
No. 10.001.796.

References

[1] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Ben-
jamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and
Dario Amodei. Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

[2] Lexin Zhou, Wout Schellaert, Fernando Martínez-Plumed, Yael Moros-
Daval, Cèsar Ferri, and José Hernández-Orallo. Larger and more in-
structable language models become less reliable. Nature, 634(8032):61–
68, 2024.

[3] Ziwei Ji, Tiezheng Yu, Yan Xu, Nayeon Lee, Etsuko Ishii, and Pascale
Fung. Towards mitigating llm hallucination via self reflection. In
Findings of the Association for Computational Linguistics: EMNLP 2023,
pages 1827–1843, 2023.

[4] Yoonjoo Lee, Kihoon Son, Tae Soo Kim, Jisu Kim, John Joon Young
Chung, Eytan Adar, and Juho Kim. One vs. many: Comprehending
accurate information from multiple erroneous and inconsistent ai
generations. In The 2024 ACM Conference on Fairness, Accountability,

and Transparency, pages 2518–2531, 2024.
[5] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir

Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih,
Tim Rocktäschel, et al. Retrieval-augmented generation for knowledge-
intensive nlp tasks. Advances in Neural Information Processing Systems,
33:9459–9474, 2020.

[6] Tolga Şakar and Hakan Emekci. Maximizing rag efficiency: A compar-
ative analysis of rag methods. Natural Language Processing, 31(1):1–25,
2025.

[7] Michael Shen, Muhammad Umar, Kiwan Maeng, G Edward Suh,
and Udit Gupta. Towards understanding systems trade-offs in
retrieval-augmented generation model inference. arXiv preprint

arXiv:2412.11854, 2024.
[8] Yun Zhu, Jia-Chen Gu, Caitlin Sikora, Ho Ko, Yinxiao Liu, Chu-Cheng

Lin, Lei Shu, Liangchen Luo, Lei Meng, Bang Liu, et al. Accelerat-
ing inference of retrieval-augmented generation via sparse context
selection. arXiv preprint arXiv:2405.16178, 2024.

[9] Wenqi Jiang, Shuai Zhang, BoranHan, JieWang, BernieWang, and Tim
Kraska. Piperag: Fast retrieval-augmented generation via algorithm-
system co-design. arXiv preprint arXiv:2403.05676, 2024.

[10] Ophir Frieder, Ida Mele, Cristina Ioana Muntean, Franco Maria Nardini,
Raffaele Perego, and Nicola Tonellotto. Caching historical embeddings
in conversational search. ACM Transactions on the Web, 18(4):1–19,
2024.

[11] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas
Mazeika, Dawn Song, and Jacob Steinhardt. Measuring massive multi-
task language understanding. arXiv preprint arXiv:2009.03300, 2020.

[12] Guangzhi Xiong, Qiao Jin, Zhiyong Lu, and Aidong Zhang. Bench-
marking retrieval-augmented generation for medicine. In Lun-Wei
Ku, Andre Martins, and Vivek Srikumar, editors, Findings of the As-
sociation for Computational Linguistics ACL 2024, pages 6233–6251,
Bangkok, Thailand and virtual meeting, August 2024. Association for
Computational Linguistics.

[13] Ranul Dayarathne, Uvini Ranaweera, and Upeksha Ganegoda. Com-
paring the performance of llms in rag-based question-answering: A
case study in computer science literature. In International Confer-

ence on Artificial Intelligence in Education Technology, pages 387–403.
Springer, 2024.

[14] James Jie Pan, Jianguo Wang, and Guoliang Li. Survey of vector
database management systems. The VLDB Journal, 33(5):1591–1615,
2024.

[15] Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai,
Eliza Rutherford, Katie Millican, George Bm Van Den Driessche, Jean-
Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al. Improving lan-
guage models by retrieving from trillions of tokens. In International

conference on machine learning, pages 2206–2240. PMLR, 2022.
[16] Qi Chen, Bing Zhao, Haidong Wang, Mingqin Li, Chuanjie Liu,

Zengzhong Li, Mao Yang, and Jingdong Wang. Spann: Highly-efficient
billion-scale approximate nearest neighborhood search. Advances in
Neural Information Processing Systems, 34:5199–5212, 2021.

[17] Yu A Malkov and Dmitry A Yashunin. Efficient and robust approxi-
mate nearest neighbor search using hierarchical navigable small world
graphs. IEEE transactions on pattern analysis and machine intelligence,
42(4):824–836, 2018.

[18] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantiza-
tion for nearest neighbor search. IEEE transactions on pattern analysis

and machine intelligence, 33(1):117–128, 2010.
[19] Vaibhav Adlakha, Parishad BehnamGhader, Xing Han Lu, Nicholas

Meade, and Siva Reddy. Evaluating Correctness and Faithfulness of
Instruction-Following Models for Question Answering. Transactions
of the Association for Computational Linguistics, 12:681–699, 05 2024.

[20] Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson,
Gergely Szilvasy, Pierre-Emmanuel Mazaré, Maria Lomeli, Lucas
Hosseini, and Hervé Jégou. The faiss library. arXiv preprint

arXiv:2401.08281, 2024.
[21] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Ka-

dian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv

preprint arXiv:2407.21783, 2024.
[22] Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri,

Ravishankar Krishnawamy, and Rohan Kadekodi. Diskann: Fast accu-
rate billion-point nearest neighbor search on a single node. Advances
in Neural Information Processing Systems, 32, 2019.

EuroMLSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Bergman et al.

[23] Siddhant Ray, Rui Pan, Zhuohan Gu, Kuntai Du, Ganesh Anantha-
narayanan, Ravi Netravali, and Junchen Jiang. Ragserve: Fast quality-
aware rag systems with configuration adaptation. arXiv preprint

arXiv:2412.10543, 2024.
[24] Chao Jin, Zili Zhang, Xuanlin Jiang, Fangyue Liu, Xin Liu, Xuanzhe

Liu, and Xin Jin. Ragcache: Efficient knowledge caching for retrieval-
augmented generation. arXiv preprint arXiv:2404.12457, 2024.

[25] Songshuo Lu, Hua Wang, Yutian Rong, Zhi Chen, and Yaohua Tang.
Turborag: Accelerating retrieval-augmented generation with precom-
puted kv caches for chunked text. arXiv preprint arXiv:2410.07590,
2024.

[26] Brian J Chan, Chao-Ting Chen, Jui-Hung Cheng, and Hen-Hsen Huang.
Don’t do rag: When cache-augmented generation is all you need for
knowledge tasks. arXiv preprint arXiv:2412.15605, 2024.

[27] Zilong Wang, Zifeng Wang, Long Le, Huaixiu Steven Zheng, Swaroop
Mishra, Vincent Perot, Yuwei Zhang, Anush Mattapalli, Ankur Taly,
Jingbo Shang, et al. Speculative rag: Enhancing retrieval augmented
generation through drafting. arXiv preprint arXiv:2407.08223, 2024.

[28] Rafael Alonso, Daniel Barbara, and Hector Garcia-Molina. Data
caching issues in an information retrieval system. ACM Transactions

on Database Systems (TODS), 15(3):359–384, 1990.

[29] Flavio Chierichetti, Ravi Kumar, and Sergei Vassilvitskii. Similarity
caching. In Proceedings of the twenty-eighth ACM SIGMOD-SIGACT-

SIGART symposium on Principles of database systems, pages 127–136,
2009.

[30] Sandeep Pandey, Andrei Broder, Flavio Chierichetti, Vanja Josifovski,
Ravi Kumar, and Sergei Vassilvitskii. Nearest-neighbor caching for
content-match applications. In Proceedings of the 18th international

conference on World wide web, pages 441–450, 2009.
[31] Fabrizio Falchi, Claudio Lucchese, Salvatore Orlando, Raffaele Perego,

and Fausto Rabitti. Similarity caching in large-scale image retrieval.
Information processing & management, 48(5):803–818, 2012.

[32] Ryo Nakamura and Noriaki Kamiyama. Analysis of similarity caching
on general cache networks. IEEE Access, 2024.

[33] Pavlos Sermpezis, Theodoros Giannakas, Thrasyvoulos Spyropoulos,
and Luigi Vigneri. Soft cache hits: Improving performance through
recommendation and delivery of related content. IEEE Journal on

Selected Areas in Communications, 36(6):1300–1313, 2018.
[34] Sajal Regmi and Chetan Phakami Pun. Gpt semantic cache: Reducing

llm costs and latency via semantic embedding caching. arXiv preprint
arXiv:2411.05276, 2024.

	Abstract
	1 Introduction
	2 Background and preliminaries
	2.1 Retrieval-augmented generation
	2.2 RAG vector search

	3 Design of Proximity
	3.1 Retrieving relevant documents with Proximity
	3.2 Proximity cache parameters and components

	4 Evaluation
	4.1 Implementation details
	4.2 Experimental setup
	4.3 Results

	5 Related work
	6 Conclusion
	Acknowledgments
	References

