
PEERSWAP: A Peer-Sampler with Randomness
Guarantees

Rachid Guerraoui∗, Anne-Marie Kermarrec∗, Anastasiia Kucherenko∗, Rafael Pinot†, Martijn de Vos∗
∗ Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

{rachid.guerraoui, anne-marie.kermarrec, anastasiia.kucherenko, martijn.devos}@epfl.ch
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Abstract—The ability of a peer-to-peer (P2P) system to effec-
tively host decentralized applications often relies on the availabil-
ity of a peer-sampling service, which provides each participant
with a random sample of other peers. Despite the practical
effectiveness of existing peer samplers, their ability to produce
random samples within a reasonable time frame remains poorly
understood from a theoretical standpoint. This paper contributes
to bridging this gap by introducing PEERSWAP, a peer-sampling
protocol with provable randomness guarantees. We establish
execution time bounds for PEERSWAP, demonstrating its abil-
ity to scale effectively with the network size. We prove that
PEERSWAP maintains the fixed structure of the communication
graph while allowing sequential peer position swaps within this
graph. We do so by showing that PEERSWAP is a specific
instance of an interchange process, a renowned model for particle
movement analysis. Leveraging this mapping, we derive execution
time bounds, expressed as a function of the network size n.
Depending on the network structure, this time can be as low
as a polylogarithmic function of n, highlighting the efficiency of
PEERSWAP. We implement PEERSWAP and conduct numerical
evaluations using regular graphs with varying connectivity and
containing up to 32 768 (215) peers. Our evaluation demonstrates
that PEERSWAP quickly provides peers with uniform random
samples of other peers.

Index Terms—Gossip-based Peer Sampling, Convergence of
Peer Sampling, Interchange Process.

I. INTRODUCTION

Peer-to-peer (P2P) systems are decentralized networks in
which users, or peers, communicate only directly with each
other using peer identifiers, e.g., public keys or network
addresses [1]. Many of the applications executed on a P2P
system rely on so-called peer sampling services that provide
each peer with a random sample of other peers [2]. Such
applications include computing aggregate functions [3], infor-
mation dissemination [4], [5], network size counting [6], [7],
consensus [8], clock synchronization [9], maintaining overlay
networks [10], [11] and decentralized learning [12].

P2P applications critically depend on the capability of peer-
sampling services to offer samples randomly and uniformly
selected from the overall pool of peers. This randomness is,
for example, essential for facilitating rapid convergence in
averaging tasks, improving model accuracy in decentralized
learning, and faster propagation of information through the
network. Depending on the application, even a small bias
in the randomness of the peer sampling service can lead to
significant performance degradation at the application layer,
e.g., resulting in uneven load balancing between peers, delays

in information propagation, or suboptimal model convergence
in decentralized learning [13].

Over the past two decades, various methods to construct
peer sampling services have been developed, falling into two
main categories: random-walk based and gossip-based proto-
cols. Random-walk based peer samplers, e.g., [6], [14]–[18],
were used in early P2P systems like Gnutella [19] and, more
recently, in Bitcoin [20]. Essentially, the idea is to execute
a random walk through the network and use the final peer
encountered as the random sample. However, random walk-
based peer samplers have two main limitations: (i) they incur
a high network overhead if many samples are required [21],
and (ii) they tend to favor nodes with high in-degrees, which
compromises their ability to provide a uniform sample [6].

Gossip-based peer samplers, e.g., [21]–[23], have signifi-
cantly evolved in recent years, successfully overcoming the
aforementioned limitations. The essence of the gossip-based
approach involves each peer maintaining a small subset of
other peers, known as a neighborhood. Periodically, each peer
exchanges a subset of its neighborhood with another peer. The
simplicity and rapid provision of new peer samples have driven
the popularity of gossip-based peer samplers. Several works
extend gossip-based peer samplers to support peers joining and
leaving the network (churn) [24], or to handle the presence of
malicious peers [25]–[30].

In a gossip-based peer sampler, each peer’s neighborhood
strongly correlates with its initial neighborhood during the
first few exchange rounds. As the neighborhood of each peer
undergoes regular updates, the distribution of potential peers in
a fixed peer’s neighborhood approaches uniformity, eventually
providing an almost ideally random sample from the entire
network. This convergence to uniformity is crucial, enabling
P2P applications to rely on the randomness of peer samples.
Empirical evidence conveys convergence to almost uniform
samples within a small, often logarithmic number of rounds
in terms of the total number of peers [21], [22], [31].

Despite their excellent practical performance, existing peer-
sampling services lack a comprehensive theoretical analysis
of their randomness guarantees and convergence time. While
some progress has been made in proving the eventual unifor-
mity of samples [30]–[32], determining the time required for
peer samplers to achieve uniformly random samples remains
an open challenge. Without clearly defining the convergence
time, i.e., the time needed to provide a random sample to each



peer, the exact performance and guarantees of peer sampling
services remains unknown.

Analyzing the randomness of peer samplers is a challenging
endeavor, primarily due to the absence of explicit theoretical
tools to analyze peers’ neighborhoods in dynamic networks.
One approach is to demonstrate the convergence of the entire
network to a random graph, thereby asserting the randomness
of each neighborhood. However, this method lacks reasonable
guarantees regarding the convergence time. For instance, while
eventual convergence to a random graph has been demon-
strated in [31], specific time guarantees are absent. A similar
approach is also explored in the flip process [33], [34], a
substantial area in graph theory. The flip process is equivalent
to a gossip-based peer sampler where peers exchange exactly
one neighbor at each step. The best-known result for the
convergence time needed for the network topology to resemble
a random graph is a large polynomial, around O(n16) where
n is the number of peers [35]. This is an impractical result
in large-scale networks where this convergence time will be
disproportionally large. Unfortunately, a specific analysis of
neighborhood characteristics instead of the network graph is
difficult because of complicated network dynamics.

Our contributions. This paper is a first step towards bridg-
ing the gap between practical advancements and theoretical
guarantees of gossip-based peer samplers. Concretely, we
make the following contributions:

1) We introduce PEERSWAP (Section III), a gossip-based
peer-sampling service that provably and efficiently pro-
vides a random sample for each peer. Similarly to other
gossip-based peer samplers, PEERSWAP has peers ran-
domly contacting each other and exchanging neighbors.
In contrast to existing approaches, PEERSWAP (i) has
peers exchanging their entire neighborhoods instead of
subsets; (ii) maintains bidirectional connections for all
peers; (iii) uses Poisson clocks on each connection to
schedule regular neighborhood exchanges (every Poisson
clocks periodically rings after random time intervals to
trigger a neighborhood exchange).

2) We prove that the design of PEERSWAP provides an
important property throughout the execution, namely
that the overall connections network maintains the same
underlying pattern as the initial one despite changes
in neighborhoods and connections (Section IV). This
property serves a dual purpose. Firstly, it guarantees that
any network property satisfied at the start of the algorithm
is preserved throughout its execution, e.g., the network
connectivity, expansion value, degree distributions, and
diameter. This can be essential for applications whose
performance critically relies on the communication pat-
terns between peers, like decentralized learning [12].
Secondly, combined with the behavior of Poisson clocks,
this property enables a comprehensive analysis of the
convergence time of PEERSWAP.

3) By establishing a link between the dynamics of peers
in PEERSWAP and an interchange process, an important
and well-studied interacting particle system [36]–[38], we

derive the convergence time of PEERSWAP (Section V).
The upper bound we deduce depends only on network
size (n) and its connectivity (measured by the spectral
gap). We show that in sufficiently connected networks
the convergence time is as low as polylogarithmic in n.

4) We design a variant of the PEERSWAP algorithm that
temporarily locks peers involved in a neighborhood ex-
change. This variant can be deployed in practical settings
with network delays (Section VI).

5) We conduct numerical evaluations of PEERSWAP using
regular graphs with varying connectivity and with up to
32 768 (215) peers (Section VII). Our evaluation conveys
the convergence of PEERSWAP over time and empirically
demonstrates that PEERSWAP is an efficient peer sampler.
We also analyze the convergence and performance of our
practical variant of PEERSWAP.

The full version of the paper can be found online [39].

II. SYSTEM MODEL AND BACKGROUND

Preliminaries on graph theory. A directed graph G con-
sists of a set of nodes V and edges E where each edge (i, j)
goes from node i ∈ V to node j ∈ V . When (i, j) ∈ E,
we say that node j is adjacent to node i. We denote by AG

the adjacency matrix of the directed graph G. For each node
i ∈ V , the neighborhood of i denoted by N(i) is a set of
all nodes which are adjacent to i. The degree of i, sometimes
called the out-degree and denoted by deg(i), is the size of its
neighborhood, or |N(i)|. If all nodes have the same degree
d, the graph is called d−regular. If, for any pair of nodes
i, j ∈ V , we have that i ∈ N(j) if and only if j ∈ N(i), then
we say that the graph G is undirected. We use the previous
notations similarly for undirected graphs.

An important measure of graph connectivity is its spectral
gap. To define it, consider D, the n×n matrix with all elements
equal to zero, except of diagonal (deg(i1), . . . ,deg(in))ik∈V .
The spectral gap of the graph G is:

λ(G) = λ(WG) = 1−max(|λ2(WG)|, |λn(WG)|),

where 1 = λ1(WG) ≥ λ2(WG) ≥ · · · ≥ λn(WG) ≥ −1 are
eigenvalues of WG = D−1/2AGD

−1/2. A higher spectral gap
λ indicates a better-connected graph.

A. Peer-sampling

Peers network. We consider a network with n fixed peers
U = {u1, . . . , un}, where each peer is assigned a unique
identifier. We refer both to a peer i and its identifier as
ui. Peers are connected over a routed network infrastructure,
which enables communication between any pair of them on the
condition that the sender knows the identifier of the receiver.
We assume that all peers have access to a global clock and that
time is continuous, allowing peers to send messages or take
actions at any moment. Additionally, there are no failures in
the system – all peers remain online during protocol execution.
These assumptions align with related theoretical work on peer
sampling [6], [16], [18], [31].



Network Topology. To describe the network structure at
time t, we consider a time-dependent directed graph G(t) =
(V,E(t)). Here, the set of nodes V = [1, 2, . . . , n] represents
the fixed set of peers U — any node i ∈ V corresponds to
a peer ui ∈ U , and there is a directed edge (i, j) ∈ E(t) if
and only if the peer ui knows the identifier of the peer uj at
the time t. We denote by N(i, t) the (ordered) neighborhood
of i in graph G(t) for any i ∈ V, t ≥ 0. Although peer
samplers typically operate within directed networks, we show
in Section II-C that in our setting, G(t) remains undirected
over time.

Peer Sampling Service. A peer-sampling service with
parameter b on the set of peers U is a decentralized com-
munication protocol that, at any time t ≥ 0, provides each
peer ui ∈ U with a random ordered tuple of distinct peers
Samplei(b, t) = (ui1 , ui2 , . . . , uib) ⊆ U\{ui} such that
{i1, i2, . . . , ib} ∈ N(i, t).

The objective of such a service is to make the distribution
of Samplei(b, t) gradually approach a uniform distribution.
Specifically, we want the random variable Samplei(b, t) to
converge in law (as t → ∞) to Uniform((U)b), where for
any finite set S and any b ≤ |S| we denote by (S)b the set
of all (ordered) b-tuples of distinct elements from S:

(S)b = {s ∈ Sb : s[i] ̸= s[j], ∀i, j ∈ [b], i ̸= j}.

Here and further the elements of (S)b are denoted by boldface
letters such as x, with x[i] denoting the i-th coordinate of x.

Timing Mechanism. Gossip-based peer samplers require a
timing mechanism that controls when a peer will exchange
its neighbors with another peer. For this purpose, we use
Poisson clocks that ring periodically after intervals that follow
an exponential distribution. We formally define this below.

A random variable Z has exponential distribution E(α) with
rate α if its cumulative distribution function is:

F (z, α) = P[Z ≤ z] =

{
1− e−αz, if z ≥ 0,
0, if z < 0.

Importantly, an exponential random variable Z is memory-
less, meaning its future behavior is unaffected by passed time.

Definition 1 (Poisson clock). A Poisson clock with rate
α is a sequence of random variables (Tn)n≥0 such that
T0 = 0 and for n ≥ 1, we have Tn =

∑n
k=1 Zk, where

(Zk)k≥1 is a sequence of independent exponential variables
(i.e., Z1, . . . , Zn

i.i.d.∼ E(α)). The realizations of (Tn)n≥0 are
called the ring times of the Poisson clock.

B. Continuous-time Markov Chains

In this work, we propose a peer-sampling process whose
future is affected solely by its current state and is independent
of its history or the exact value of current time t. This property
of the process is called Markov property, that we formally
outline next.

Consider a family of random variables X = (Xt)t≥0 taking
values in a finite state space S. X is a continuous-time Markov
chain (ctMC) if it satisfies the Markov Property:

P[Xtn = in | Xt1 = i1, . . . , Xtn−1 = in−1] =

P[Xtn = in | Xtn−1 = in−1].

for all i1, . . . , in ∈ S and any sequence 0 ≤ t1 ≤ t2 ≤
· · · ≤ tn of times. The process is time-homogeneous if the
conditional probability does not depend on the current time,
but only on the time interval between observations, i.e.,

P[Xt+h = j | Xh = i] = P[Xt = j | X0 = i], (1)
for any i, j ∈ S, h ≥ 0.

For time-homogeneous ctMC we denote the probability in
(1) as a transition probability Pi,j(t) and define the matrix
of transition probabilities at time t as P (t) = (Pi,j(t))i,j∈S .
A ctMC is called irreducible if for any states i, j ∈ S there
exists t > 0 such that Pi,j(t) > 0. In this paper, if not stated
otherwise, we consider irreducible time-homogeneous ctMCs.

The transition probability can be used to completely char-
acterize the ctMC, but it gives a lot of information, which is
not always needed. An alternative (and more succinct) way
of characterizing the dynamic of a ctMC is the infinitesimal
generator [40][Chapter 20.1].

Definition 2 (Infinitesimal generator). Let X = (Xt)t≥0 be
a time-homogeneous ctMC with finite set of states S and
transition probabilities P (t). The infinitesimal generator of X
is the matrix of size |S| × |S| defined as:

Q = lim
h→0+

P (h)− I

h
,

where I is the identity matrix of size |S| × |S|. We denote
entries of Q as q(i, j) for ∀i, j ∈ S. By construction of Q we
always have

∑
j∈S

q(i, j) = 0,∀i ∈ S.

Definition 3. The total variation distance dTV between two
distributions1 µ, ν on the same finite set of states S is given
by:

dTV (µ, ν) = 1/2
∑
s∈S

| µs − νs |, (2)

where µs (resp. νs) denotes the probability of observing s
according to µ (resp. ν).

Theorem 1 (Theorem 20.1 from [40]). Consider an irre-
ducible ctMC X on a finite set of states S with matrix
of transition probabilities P (t). Then there exists a unique
distribution π = (πj)j∈S such that πP (t) = π for all t ≥ 0,
and

max
i∈S

dTV (Pi,·(t), π)
t→∞−−−→ 0,

where Pi,·(t) = (Pi,j(t))j∈S .

1We use a slight abuse of notation by interchangeably referring to a discrete
distribution and the vector representing its probabilities.



We call such π a stationary distribution of X and define
the ε-mixing time of a ctMC X as

TX(ε) = inf

{
t ≥ 0 : max

i∈S
dTV (Pi,·(t), π) ≤ ε

}
.

The mixing time of ctMCs is a key component in our further
derivations of the convergence time of our peer sampler.

C. Auxiliary process of peers’ movement on a fixed graph

Peer-sampling services keep the set of peers fixed and mod-
ify the connections between them. In this way, graphs G(t)
represent the consecutive states of a given “dynamic” graph
with fixed nodes and reconnecting edges. Usually, processes
on dynamic graphs are complicated to analyze. Thus, in this
paper, we map peer-sampling processes on dynamic graphs
and an auxiliary so-called interchange process where the graph
is fixed while peers change positions on the graph’s nodes.

Interchange process. An interchange process IP (k,G)
describes dynamics of k peers on G = (V,E). The set of
possible states for this chain is (V )k, i.e., all possible positions
of k peers on the nodes of G, where no two peers can be
positioned on the same node. The transition between states
happens by randomly choosing edges from E, and if an edge
e ∈ E is chosen, the peers (if any) positioned at the endpoints
of e are switched. If there is just one peer, it still switches its
position to the other endpoint of the edge. We will implicitly
assume that G is connected, in which case interchane process
is irreducible and thus admits a stationary distribution and
mixing time [40][Example 1.12.].

Now, we formally describe an interchange process as per
[41]. We define a transposition function for any edge e =
(i, j) ∈ E and node v ∈ V as

fe(v) =


j, if v = i,
i, if v = j,
v, otherwise.

(3)

We also write

fe(x) = (fe(x[i]))i∈[1,k] for x ∈ (V )k. (4)

An interchange process with parameter k on G = (V,E),
or IP (k,G) for short, is a ctMC with state space (V )k such
that for any distinct x,y ∈ (V )k:

q(x,y) =

{
1, if ∃e ∈ E s.t. fe(x) = y,
0, otherwise.

(5)

III. POISSON-BASED RANDOM SWAP (PEERSWAP)

We now introduce the PEERSWAP protocol. An execution
of PEERSWAP starts from a set of peers U connected in a
d-regular2 undirected graph G(0) = (V,E(0)), where any
node i ∈ V represents a user ui ∈ U . PEERSWAP assigns
an independent Poisson clock Ce with rate α to each edge
e ∈ E(0). By default, α = 1, and system designers can adjust

2For presentation clarity, we focus on regular topologies. However, PEER-
SWAP and its analysis are also applicable to irregular graphs.

Algorithm 1 The PEERSWAP algorithm from the perspective
of peer ui.

Require: Undirected G(0) = (V,E(0)) describing users U ;
parameter b; Poisson clocks with rate α Ce = Ci(j) =
Cj(i) for ∀e = (i, j) ∈ E(0).

Ensure: Samplei(b, t) ∼ Uniform((U\{ui})b).

1: upon some Ce rings between i and j at time t do
2: Set SWAPi ← ((uκ, Ci(κ))κ∈N(i,t))
3: Send SWAPi to uj ▷ Step 1
4: Set REPLACEj ← uj

5: Send REPLACEj request to all (uκ)κ∈N(i,t) ▷ Step 2
6: end upon

7: upon receiving SWAPj from uj at time t do ▷ Step 3
8: Erase ((uκ, Ci(κ))κ∈N(i,t))
9: Store ((ul, Cj(l))l∈N(j,t)) from SWAPj

▷ G(t) changed, N(i, t)← N(j, t)
10: end upon

11: upon receiving REPLACEl from some uκ do ▷ Step 4
12: Store ul and set Ci(l)← Ci(κ)
13: Erase (uκ, Ci(κ))

▷ G(t) changed: in E(t) (i, κ) is replaced with (i, l)
14: end upon

15: function Samplei(b, t)
16: At time t select b random peers from (uκ)κ∈N(i,t)

17: Return a randomly ordered tuple of these peers
18: end function

it to speed up or slow down swap rates based on application
requirements (more details in Section VII-D). Each clock Ce

is shared between the peers at the endpoints of the edge
e ∈ E(0). If no Poisson clock rings, the graph G(t) remains
unchanged as time passes. Whenever a Poisson clock on some
edge e = (i, j) rings at time t, peers ui and uj swap their
position following the four steps visualized in Figure 1 and as
described in Algorithm 1:

• Step 1: Peer ui (resp. uj) sends a SWAP message
initiating the swap to uj (resp. ui). This SWAP message
contains identifiers of all users uκ such that κ ∈ N(i, t)
(resp. N(j, t)), as well as all the Poisson clocks ui (resp.
uj) shares with its neighbors.

• Step 2: Peer ui sends a REPLACEj message to its
neighbors (uκ)κ∈N(i,t), informing them about the swap
and requesting them to replace its identifier, i.e., ui, with
uj . Similarly, peer uj also sends a REPLACEi message
to its neighbors with the identifier of peer ui.

• Step 3: Upon reception of a SWAP message, peer ui (resp.
uj) overwrites its neighborhood and associated Poisson
clocks it previously stored with the ones contained in the
received message. This step alters the structure of the
current graph G(t), as shown in Step 3 of Figure 1 and
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Fig. 1: A single swap during the PEERSWAP execution between a pair of adjacent peers ui and uj . Here, blue doted lines
indicate sent messages and black solid lines represent connections between peers. We indicate a directed edge with an arrow.

may temporarily make the graph appear undirected.
• Step 4: Peers that received a REPLACEj message from

peer ui replace the identifier of ui with that of uj . Also,
consider peers that were in the former neighborhood of
ui ((uκ)κ∈N(i,t)) that now became a neighborhood of
uj . These peers as well replace identifier ui with uj , but
without modifying the associated Poisson clock.

PEERSWAP is driven by the Poisson clocks placed on the
graph edges. Their decentralized implementation is based on
shared pseudorandom generators of exponential variables with
rate α and is explained in details in Appendix X of the full
version of the paper [39]. The rate α indicates that, on average,
two peers connected by an edge swap their positions after
every time period α. Thus, peers continuously exchange their
neighborhoods and get their neighborhoods refreshed. At any
point in time t ≥ 0, a peer ui can invoke the Samplei(b, t)
function, yielding a random sample of b peers from the
neighborhood of ui at time t (Lines 15-18 in Algorithm 1).

Remark 1. When we refer to G(t) we always mean its final
configuration. This means that if a Poisson clock rang at time
t, G(t) will always refer to the graph after the modification.

For the upcoming theoretical analysis, we assume that the
system has no delays and all actions during the four steps
described above are executed instantly. Thus, by design, for
any t ≥ 0, the graph G(t) is always undirected. In Section VI
we describe how PEERSWAP can be adapted to function in
more realistic settings with network delays.

IV. THE EQUIVALENCE OF PEERSWAP AND THE
INTERCHANGE PROCESS

By considering the swap in Figure 1 and changing the
graph representation at the end of Step 4 in Figure 2, we
observe that running the swap procedure between two peers,
i.e., modifying the structure of the graph, is equivalent to
having a fixed graph structure on which we exchange the
positions of the two considered peers. In this section, we prove
that this equivalence holds in general by relating PEERSWAP
(which produces a dynamic sequence of graphs G(t)) to an
interchange process on G(0). This equivalence is the main
building block of our analysis and allows us to obtain the
convergence result for Samplei(b, t) in Section V. Complete
proofs related to this section can be found in Appendix IX.B
of the full version of the paper [39].

A. Isomorphism of graphs built by PEERSWAP

During PEERSWAP process, the network can be de-
scribed by a sequence of graphs (G(t))t≥0 where the
set of nodes V represents peers (remains fixed), and
edges E(t) are modified.

Below, we show that for any t ≥ 0 their exists an
isomorphism between G(t) and G(0).

Definition 4 (isomorphism). Two graphs G and G′ are iso-
morphic according to a bijection σ : V (G) → V (G′) if for
any two vertices i and j that are adjacent in G, σ(i) and σ(j)
are adjacent in G′ (and vice versa).

Lemma 1. For all t ≥ 0, G(0) and G(t) are isomorphic ac-
cording to a bijection σt : V (G(0))→ V (G(t)). Furthermore,
if some nodes i and j are adjacent in G(t), then the Poisson
clock they share is Ce with e = (σ−1

t (i), σ−1
t (j)) ∈ E(0).

Now that we know that graphs are isomorphic and that all
Poisson clocks of the dynamic graphs (Gt)t>0 can be mapped
to Poisson clocks on the initial graph G(0), we show that there
exists an alternative bijection from G(t) into G(0) defined only
by Poisson clocks on G(0). This bijection is easier to operate
with and is going to be used for the rest of the paper.

Lemma 2. Consider PEERSWAP process starting from
graph G(0) = (V,E(0)), resulting in sequence of graphs
(G(t))t≥0 = (V,E(t))t≥0. Let us fix some value t > 0 and
let ring times of Poisson clocks up to time t be t1, t2, . . . , tN
with 0 = t0 < t1 < · · · < tN ≤ t. Denote (im, jm) =
em ∈ E(tm−1) the edge on which the clock rang at time tm,
and let (̂im, ĵm) = êm = (σ−1

t (im), σ−1
t (jm)) ∈ E(0) be the

corresponding edge to em ∈ E(0). We define

γt = fêN ◦ · · · ◦ fê1 ,

where for every e, fe is as defined in (3).
Then γt = σ−1

t , where σt is as defined in Lemma1.

B. Alternative PEERSWAP process and its connection to in-
terchange

Due to the isomorphism of (G(t))t≥0 and G(0), studying
the dynamic of (G(t))t≥0 is equivalent to studying an auxiliary
process where peers move on a fixed graph G(0). Formally
this process is described below.
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Fig. 2: The network structure before and after a swap in PEERSWAP between a pair of adjacent peers ui and uj (as also shown
in Figure 1). c1, c2, . . . , cd, c′2, . . . , c

′
d correspond to Poisson clocks assigned to the respective edges. The alternative illustration

after the swap shows that the general network pattern did not change, but peers ui, uj switched their positions.

Definition 5. We study connections between any k distinct
peers (ui1 , ui2 , . . . uik) ⊂ U , such that n ≥ k > 0. To do
so, we consider the process Y (k) = (Y

(k)
t )t≥0. It has a set

of states (V )k, initial state Y
(k)
0 = (i1, i2, . . . , ik) and for any

t ≥ 0 we set Y (k)
t = γt(Y

(k)
0 ), where γt(x) = (γt(x[i]))i∈[1,k]

for any x ∈ (V )k.

Studying processes Y (k) is an alternative way to describe
dynamic of PEERSWAP. Y (k) operates on a fixed graph
G(0) = (V,E(0)), and peers U or their subset are
switching positions on top of V .

We show that for any k process Y (k) is a time-homogeneous
ctMC and prove that it is an interchange process.

Theorem 2. Consider PEERSWAP process on peers U starting
from graph G(0) = (V,E(0)), and process Y(k) characteriz-
ing some k peers in PEERSWAP, 1 ≤ k ≤ |V | as per Defini-
tion 5. Then, Y(k) is an interchange process IP (k,G(0)) (as
defined in Section II-C.)

Proof sketch. We demonstrate that since isomorphisms γt rely
on Poisson clocks that are memoryless, Y(k) is a time-
homogeneous ctMC. Then, to show that two ctMCs are
equivalent, it is sufficient to prove that their infinitesimal
generators are equal (as in Definition 2). We calculate the
probabilities of zero, one, and more than one Poisson clock
ringing in any period of length h. These probabilities allow to
derive lim

h→0+

Px,y(h)
h = q(x,y) for any two states x,y ∈ (V )k

and to show the equality with (5).

V. CONVERGENCE TIME OF PEERSWAP

Since PEERSWAP is tightly connected to an interchange
process, we can study the neighborhood of each peer in an
execution of PEERSWAP on G(0) by considering IP (n,G(0)).
By utilizing this, we bound the difference between the prob-
ability of any particular peer sample that PEERSWAP can
provide and the uniform probability, i.e., 1

(n−1
d )

. Complete
proofs related to this section can be found in Appendix IX.C
of the full version of the paper [39].

Theorem 3. Consider a set of peers U = {u1, . . . , un}
connected in a d-regular connected graph G(0) = (V,E(0)),
such that V = {1, 2, . . . , n} and each node i corresponds
to peer ui. Also, consider PEERSWAP protocol starting from

G(0) with Poisson clocks of rate α. Then for any ε > 0, any
peer ui ∈ U , and any u ∈ (U\{ui})d the following holds true∣∣∣∣P[Samplei(d, T ) = u]− (n− d− 1)!

(n− 1)!

∣∣∣∣ ≤ 4ε,

where T := α · TY (d+1)(ε) and Y (d+1) is an IP (d+1, G(0))
i.e., ε-mixing time of an interchange process IP (d+1, G(0)).

Proof Sketch. We start by showing that for bounding the
left side of theorem inequality it is sufficient to bound the
difference between the probabilities that u and any other
sample u′ ∈ (U\{ui})d are neighborhoods of ui. Then, we
use the fact from Theorem3 that connections between ui and u
(resp. u′) in PEERSWAP follow the same dynamic as those of
peers in Y (resp. Y ′), interchange processes IP (d+1, G(0)).
Processes Y and Y ′ have the same stationary distributions
and mixing times T = TY (ε) = TY ′(ε). Hence, we consider
ρ – the stationary probability of the event that peers are
located in such a way that the first one has all others in the
neighborhood. Then after time T both P[Samplei(d, T ) = u]
and P[Samplei(d, T ) = u′] differ from ρ no more than by ε.
This implies that the difference between these probabilities is
no more than 2ε. The amount of different samples is (n−1)!

(n−d−1)!
that concludes bounding of the theorem expression.

The above result ensures that distribution of Samplei(d, t)
converges to a uniform distribution on (U\{ui})d for any ui ∈
U . We now assess the convergence time of PEERSWAP.

Theorem 4. Consider a set of peers U = {u1, . . . , un}
connected in a d-regular connected graph G(0) = (V,E(0))
and PEERSWAP protocol executing starting from G(0) with
Poisson clocks of rate α. For any peer ui ∈ U , we consider
the random variable Samplei(d, t) after time t and denote
by L(Samplei(d, t)) its probability distribution. Then for any
δ ∈ (0, 1) there exists T ∈ O

(
α log(n) log(nd+1/δ)

dλ(G(0))

)
such that:

dTV (L(Samplei(d, T )), Uniform((U\{ui})d)) ≤ δ.

Proof Sketch. To calculate the total variation distance de-
scribed in the theorem statement, we write its value by
Definition 3 and use the result of Theorem 3. Then, we
estimate the value of T by bounding the mixing time of an
interchange process IP (d + 1, G(0)). This bound is possible
due to the connection of interchange processes and random



walks. Random walks are ctMCs with mixing time that is
directly related to the graph connectivity.

Implications of Theorem 4. Hence, when δ and α are
constants of n, the distribution of Samplei(d, t), ∀i ∈ V is δ-
close to the uniform one after time T = O

(
log2(n)
λ(G(0))

)
, which is

a simpler expression than the bound derived above. Moreover,
if the graph is sufficiently-connected, i.e., the spectral gap of
G(0) is Ω( 1

logc(n) ), where c is a constant (applicable to many
popular graphs such as hypercubes, Erdos-Renyi or expander
graphs), then the convergence time of PEERSWAP on network
G(0) is polylogarithmic. Lastly, we note that our upper bound
on convergence time with sample size d also applies to any
other sample size b where 1 ≤ b ≤ d.

VI. A PRACTICAL IMPLEMENTATION OF PEERSWAP

So far, we have presented the PEERSWAP protocol and
theoretically proven its convergence. In this section, we present
a variant of Algorithm 1 that can function in a setting with
network delays.

A. The Challenge of PEERSWAP with Network Delays

Deploying Algorithm 1 in P2P networks with network
delays may fail, as network delays affect the ordering of
messages received by peers and thus break the fixed structure
of the underlying topology. This is because the execution of
a single swap A consists of two sequential message deliveries
(SWAP and REPLACE), each message taking some time to
be delivered if network delays are present. Meanwhile, the
execution of another swap may interfere with A. We elaborate
this with an example, involving four peers ui, uj , uk and ul,
as shown in Figure 3. When the Poisson clock associated with
the edge (ui, uj) rings, uj will send a SWAP message to ui

(for presentation clarity, we do not show the SWAP message
by ui). Now assume that nearly at the same time, the Poisson
clock associated with the edge (uk, ul) rings. Peer ul thus
sends a SWAP message to uk. Assume that uk receives this
swap message before the REPLACE message from ui, the latter
being associated with the swap between ui and uj . Now, uk

will replace its neighbors with the neighbors of ul. When uk

later receives the REPLACE message from ui, uk might now
be unable to correctly replace ui in its neighbor list, resulting
in an execution error. More specifically, the REPLACE message
sent by ui to uk should have been sent to ul instead.

Swap Replace1 Swap23

Fig. 3: A situation where the execution of Algorithm 1 in
settings with network delays can violate protocol correctness
and alter the fixed structure of the graph.

B. Lock-based Peer Swaps

Generally speaking, it is unsafe to execute the PEERSWAP
protocol for any two swaps involving at least one common
peer. We address this concern by having peers lock other peers
prior to executing a swap. In this extended protocol, a peer
ui that is locked for some swap A will only process messages
related to A. When a swap between ui and uj starts, both ui

and uj attempt to lock their neighbor peers. If ui, uj , or any
of their neighbors is already locked for another swap, the swap
fails. Despite the fact that some swaps might fail, we found this
simple protocol to be effective and avoiding the need for more
resource-intensive forms of coordination such as consensus or
other agreement protocols. We next describe the involved steps
in this extended protocol that makes PEERSWAP suitable for
deployment in settings with network delays. We explain the
execution of a particular swap A between peers ui and uj ,
and outline the scenarios where a swap can fail.

Preparing for a swap. Each peer keeps track of its lock
status, i.e., if it has been locked for some swap. Whenever a
Poisson clock on some edge e = (i, j) rings, ui, respectively
uj , checks if it is already locked. If ui is not locked for
another swap A′ ̸= A, it will lock itself for A. ui then request
its neighbors to lock themselves as well for A by sending a
LOCKREQUEST message to all its neighbors except uj . This
message includes the specifications of swap A.

When peer uk receives a LOCKREQUEST message from
ui, uk will check if it is already locked for another swap
A′ ̸= A. If not, it will lock itself for A and reply with a
LOCKRESPONSE message. This message contains a binary
flag success that indicates whether uk has successfully locked
itself in response to the received LOCKREQUEST message
from ui. If uk is not locked, success will be set to true, whereas
if uk is already locked for another swap, it will be set to false.

Upon reception of a LOCKRESPONSE message by ui from
uk, ui verifies if it is still participating in swap A, i.e., is
locked for this swap, and ignores the message if it is unlocked.
This check is necessary because swap A could have already
failed (explained below) even though the LOCKRESPONSE
message from uk (or the LOCKREQUEST message to uk)
was still in transit. If all neighbors of ui replied with a
LOCKRESPONSE message containing a positive value for the
SUCCESS field, ui sends a SWAP message to uj . However, if
even a single LOCKRESPONSE message with a negative value
for the SUCCESS field is received, the swap cannot proceed. In
this situation, ui sends an UNLOCK message to the neighbors
it previously sent a LOCKREQUEST to, to ensure that these
previously-locked neighbors can participate in other swaps.
Furthermore, it sends a SWAPFAIL message to uj , informing
about the failed swap. When uj receives a SWAPFAIL message
from ui, it also sends an UNLOCK message to its neighbors,
except sending it to ui. uj will then unlock itself.

Executing a swap. If ui has received positive LOCKRE-
SPONSE messages from all its neighbors, as well as received
a SWAP message from uj , swap A is now safe to execute as
all peers involved in A are aware of the swap and locked for



it. At that point, ui sends REPLACE messages to its neighbors,
similarly as described in Algorithm 1. Then, ui erases its
neighborhood and stores identifiers of the neighbors of uj

contained in the received SWAP message. Finally, ui unlocks
itself as it has completed all required actions for swap A.
When uk receives a REPLACE message, it will replace ui with
uj in its neighborhood and unlock itself. This completes the
execution of swap A.

VII. NUMERICAL EVALUATION

We present numerical evaluations that analyze the con-
vergence speed of PEERSWAP under different parameters
and network topologies. We have implemented a simulation
of PEERSWAP in the Python programming language, using
the NETWORKX library to generate network topologies. This
simulator includes an implementation of our lock-based swap
protocol described in Section VI. All our source code, exper-
iment scripts, and documentation is publicly available.3

A. Setup and Convergence Metric

The main objective of our evaluation is to empirically show
that PEERSWAP quickly provides peers with a neighborhood
of peers that is indistinguishable from taking a uniform
random sample from all peers in the topology. To do so,
we run PEERSWAP with different parameters and pre-defined
experiment durations T . If not stated otherwise, the default
rate of Poisson clocks is 1. At the end of each experiment,
we observe the neighborhood of one or more peers. We run
each experiment multiple times (we specify how many for
each experiment in this section), which yields the frequencies
of final neighborhoods encountered for each peer. In perfect
circumstances, each peer encounters each neighborhood with
equal frequencies; however, these frequencies should show
some variance in practice. To understand the convergence of
PEERSWAP, we disable network latencies for all upcoming
experiments, except for those in Section VII-D.

To determine convergence in PEERSWAP, we run a Kol-
mogorov–Smirnov (KS) test [42] between the observed fre-
quencies of neighborhoods and a synthetic sequence of neigh-
borhood frequencies that we construct by uniformly sampling
all possible neighborhoods. The KS-test is a standard test that
is frequently used to compare the similarity of distribution
functions. In the context of PEERSWAP, it indicates how
far the neighborhood frequencies of a particular peer differ
from a uniform random distribution. This test yields two
values: a distance and a p-value. In our experiments, the KS-
test distance quantifies the maximal deviation between the
cumulative distribution functions of the observed and expected
neighborhood frequencies, indicating the extent of similarity.
The p-value essentially assesses the statistical significance of
this deviation. More precisely, it represents the probability of
wrongly rejecting the null hypothesis ”the two distributions
are identical.” A lower p-value thus suggests less likelihood
that the observed distribution matches a uniform distribution.

3Source code available at https://github.com/sacs-epfl/peerswap.
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Fig. 4: The distribution of KS-test distances for neighborhoods
distributions, when running PEERSWAP for topologies with
different spectral gaps (λ) and experiment durations (T ).

The following experiments are presented in three parts. In
Section VII-B, we provide an extensive analysis of neighbor-
hoods’ frequencies (of Samplei(b, T ), when b = d) when
running PEERSWAP in small-scale networks, i.e., n ≤ 100
peers. In Section VII-C, we present a peer-frequency analysis
(of Samplei(b, T ), when b = 1) on large networks, i.e.,
n ≥ 1000 peers. Finally, in Section VII-D, we explore the
convergence and performance of PEERSWAP with different
forms of network delays.

B. Neighborhood Frequencies for Small-scale Networks

We first explore how the distance between neighborhood
frequencies in PEERSWAP and a uniform distribution is influ-
enced by the network connectivity (measured by spectral gap),
the initial position of peers in the graph, and the execution time
of PEERSWAP.

Setup. We generate d-regular topologies, run PEERSWAP
on each topology for a period of T seconds, and observe the
neighborhood of each peer after the experiment ends. There
are

(
n−1
d

)
possible neighborhoods for a particular peer. For

a d-regular topology with n peers, we run each experiment⌈(
n−1
d

)
× 100

d

⌉
times. This ensures that, on average, each

neighborhood is observed 100 times. We fix d = 4 and n = 64.
Since we aim to analyze how the spectral gap affects the

convergence speed of PEERSWAP but cannot directly generate
topologies with a particular spectral gap, we do the following.
We first generate 106 4-regular topologies with 64 peers,
compute for each topology its spectral gap λ, and select ten
of these topologies such that their spectral gaps somewhat
uniformly cover values in the range λ = [0.07, 0.22] (these
values are the lowest and highest λ we found throughout
topology generation). A higher spectral gap λ indicates a
better-connected topology, and we aim to understand its im-
pacts on the convergence of PEERSWAP empirically. We run
PEERSWAP on these topologies for T = 4 and T = 6
seconds while recording the neighborhood frequencies for
each peer. We then run a KS test for each previously received
neighborhood distribution.

Results. Figure 4 shows the variance in KS-test distances
with a boxplot for each tested topology and for T = 4
(left) and T = 6 (right). Each boxplot consists of 64 values,
each associated with the KS-test distance computed using the

https://github.com/sacs-epfl/peerswap
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(a) Peer frequencies after various durations
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(b) Peer frequencies for different network sizes
(d = 5, T = 5).

Peers (n) KS-test
distance

KS-test
p-value

2048 0.020 0.79
4096 0.011 0.96
8192 0.012 0.65
16 384 0.006 0.88
32 768 0.003 0.97

(c) KS-test statistics associated
with plot (b), for different values
of n.

Fig. 5: ECDFs of peer frequencies’ distributions across diverse experiment durations and larger topologies (up to 32 678 nodes).
For T ≥ 3, ECDFs are visually indistinguishable from those obtained through uniform sampling.

neighborhood distribution of a peer in the topology. On the
one hand, for the topologies with a small spectral gap (e.g.,
λ = 0.07 or λ = 0.088), we observe relatively high KS-
test distances for T = 4 and small p-values (p ≤ 0.05) for
individual KS tests, meaning that for these topologies the
neighborhood frequencies cannot be reasonably assumed to
have converged to a uniform distribution yet4. On the other
hand, for topologies with λ ≥ 0.18, we find large p-values,
suggesting that PEERSWAP on these topologies has converged
at T = 4. Most of the KS-test distances are relatively low
(below 0.01). The KS-test distances corresponding to T = 6
are lower compared to T = 4, and we find that 89.9% of
all p-values produced by the KS test are higher than 0.05.
Furthermore, we observe a low variance of KS-test distances
for a particular topology and T = 6, indicating that the initial
starting position of the peer in the graph does not affect its
convergence much. This suggests that the neighborhoods of
peers indeed approach a uniform sample over time.

Conclusion. These experiments demonstrate that PEER-
SWAP requires less time to generate uniformly random peer
samples on networks with better connectivity (i.e., higher
spectral gaps). For most 4-regular topologies with 26 = 64
peers, and irrespective of the initial starting position of peers,
the neighborhood distribution closely approximates uniformity
after just 6 seconds. This motivates us to focus on specific
topologies and observed peers in further experiments.

C. Peer Frequencies for Large-scale Networks
Since ensuring coverage of all unique neighborhoods

quickly becomes an intractable problem when the network
size increases, we have limited our empirical analysis in
Section VII-B to relatively small topologies (n = 64). To
evaluate PEERSWAP with larger topologies, we count the
frequencies on a per-peer instead of a per-neighborhood basis.

Setup. Similar to the previous experiments, we repeat each
experiment until, on average, each peer is observed 100 times.
Also, based on the outcome of our previous experiment in
Section VII-B, we established that results do not vary signif-
icantly, either for different observed peers or for topologies

4For the topology with λ = 0.088, we find a disproportionate median KS-
test distance of 0.15 with T = 4. For presentation clarity, we omitted the
corresponding boxplot from Figure 4.

with different but relatively high connectivity. Therefore, in
this set of experiments, we average the results for each pair of
(n, d) over five different random topologies while examining
one random peer. We focus on how KS-test distances change
with different network sizes n and durations of the PEERSWAP
execution T .

Results. Figure 5a shows the empirical cumulative distribu-
tion function (ECDF) of peer frequencies for topologies with
n = 4096, d = 5 and with five different experiment durations
T . We visually notice that the distribution of peer frequencies
quickly approaches uniform sampling, e.g., peer frequencies
become more concentrated around 100. Figure 5b shows the
distribution of peer frequencies for increasing values of n up
to 32 768 (215) peers while fixing d = 5 and T = 5. We
observe that all network sizes yield peer frequencies visually
indistinguishable from one another and from those obtained
through uniform sampling. Finally, we summarize the KS-test
distances for each value of n and topology in Figure 5c. We
can see that the KS-test distance ranges from 0.003 to 0.02
and provides large p-values for all tests.

Conclusion. For the evaluated large-scale topologies, the
distribution of peer frequencies approaches that of uniform
sampling in a short time. This demonstrates the convergence
of PEERSWAP in large networks.

D. Convergence and Throughput of PEERSWAP with Network
Delays

In this part, we explore the convergence and performance
of PEERSWAP in the presence of network delays. We use
the adapted protocol as described in Section VI. Our goal
is to see if the distribution of peer samples provided by
PEERSWAP converges to the uniform one even if messages
are delayed. Additionally, we believe that adjusting the main
parameter of PEERSWAP, the Poisson clocks rate α, can result
in more swaps per second and thus help to improve the
convergence speed. To explore this, we specifically focus on
the average throughput of PEERSWAP, i.e., the average number
of (successful) swaps per second, for varying network delays
and edge activation frequencies.

Setup. We consider a network of n = 1024 peers, connected
in a d-regular topology with d = 5. For each pair of
peers, we generate pair-wise network delays through uniformly
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Fig. 6: Distribution of peer frequencies for different δmax ∈ {20, 50, 100} values (in milliseconds) and with realistic traces
applied (right-most plot), for different experiment durations.

drawing a delay between the interval [0, δmax]. This set of
experiments considers three synthetic delay values – those of
δmax ∈ {20, 50, 100} ms. We also run a fourth configuration
with realistic network traces that are sourced from Wonder-
Network [43]. For the sake of presentation, we present results
with respect to the average number of edge activations in the
system, denoted by r. This value depends on the total number
of edges in the graph and Poisson clock rate α.

First, we run a similar experiment to Section VII-C in the
presence of delays. We consider various durations of T ∈
{60, 90, 120, 150, 180} seconds and derive the distribution of
peer frequencies provided by samples of PEERSWAP. Here, we
adjust the Poisson clock rate α in such a way that on average
50 swaps per second are initiated.

Second, we control the interconnected values of α and r,
and estimate the influence of Poisson clocks’ rates on the
PEERSWAP throughput. We vary r from 10 to 100 edge
activations per second. Our goal is to estimate PEERSWAP
throughput, defined as the average number of successful
swaps per second. Higher is the throughput, quicker is the
convergence of PEERSWAP. We run each experiment for two
minutes and repeat for five seeds.

Convergence results. Figure 6 shows the empirical cumu-
lative distribution function (ECDF) of peer frequencies with
varying delays δmax and when using traces. Comparing the
plots in Figure 6, we can see that it takes longer for PEERSWAP
to converge when the larger delays or realistic traces are
applied. This is due to the lower throughput of PEERSWAP
with realistic traces and large delays than with smaller delays.
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Fig. 7: The throughput of PEERSWAP (in swaps/s.) for increas-
ing frequencies of edge activation (left) and the distribution of
individual swap durations (right), for different network delays.

Throughput results. Figure 7 (left) shows the throughput of
PEERSWAP, for different values of δmax and with our realistic
traces. Increasing the swap frequency generally increases the
achievable throughput. We find this increase to flatten out,
which is particularly noticeable for the experiments with larger
network delays. This can be explained by two reasons. First,
the probability of two “conflicting” swaps being initiated at
the same time increases as more swaps are initiated within
the same time period. Second, when network delays increase,
each swap takes longer to finish, resulting in prolonged periods
of nodes being locked. Figure 7 (right) shows the distribution
of swap durations for each network delay profile, indeed
confirming our observation. While throughput optimization is
not the main focus of our paper, modifying the Poisson clock
rate is a tangible way of improving in performance, especially
if message delays are mild (i.e., up to 20 ms). This comes,
however, at the cost of additional network traffic.

Conclusion. Our empirical results hint that PEERSWAP
can reach quick convergence even in challenging network
conditions, e.g., when deployed on the Internet. Also, adjust-
ment of the Poisson clocks rate can significantly improve the
throughput and protocol convergence.

VIII. CONCLUDING REMARKS

Our work makes the first step towards establishing gossip-
based peer samplers with provable randomness guarantees.
We introduced PEERSWAP, a protocol which provides each
peer with a random sample within a time frame determined
by the network’s size and connectivity. The idea underlying
PEERSWAP is simple: two adjacent peers periodically swap
their entire neighborhood. The theoretical analysis, which is
more challenging, has been made possible by establishing a
link between the dynamics of peers in PEERSWAP and inter-
change processes. We also introduced a variant of PEERSWAP
that operates in the presence of network delays. Our numerical
evaluation using a simulated version of PEERSWAP conveys
the convergence of PEERSWAP over time, thus confirming that
it is an efficient and scalable peer sampler.
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