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Abstract

Decentralized learning (DL) is an emerging technique that allows
nodes on the web to collaboratively train machine learning models
without sharing raw data. Dealing with stragglers, i.e., nodes with
slower compute or communication than others, is a key challenge in
DL. We presentDivShare, a novel asynchronous DL algorithm that
achieves fast model convergence in the presence of communication
stragglers. DivShare achieves this by having nodes fragment their
models into parameter subsets and send, in parallel to computation,
each subset to a random sample of other nodes instead of sequen-
tially exchanging full models. The transfer of smaller fragments
allows more efficient usage of the collective bandwidth and enables
nodes with slow network links to quickly contribute with at least
some of their model parameters. By theoretically proving the con-
vergence of DivShare, we provide, to the best of our knowledge,
the first formal proof of convergence for a DL algorithm that ac-
counts for the effects of asynchronous communication with delays.
We experimentally evaluate DivShare against two state-of-the-art
DL baselines, AD-PSGD and Swift, and with two standard datasets,
CIFAR-10 and MovieLens. We find that DivShare with communi-
cation stragglers lowers time-to-accuracy by up to 3.9× compared
to AD-PSGD on the CIFAR-10 dataset. Compared to baselines, Di-
vShare also achieves up to 19.4% better accuracy and 9.5% lower
test loss on the CIFAR-10 and MovieLens datasets, respectively.
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1 Introduction

Decentralized learning (DL) is a collaborative learning framework
that allows nodes to train a machine learning (ML) model without
sharing their private datasets with others and without the involve-
ment of a centralized coordinating entity (e.g., a server) [38]. During
each round of DL, nodes independently train their models using
their private dataset. Based on a specified communication topology,
the updated local models are then exchanged with neighbors over
the Internet and aggregated at each recipient node. The aggregated
model serves as the starting point for the next round, and this pro-
cess continues until convergence. This approach enables web-based
applications, such as recommender systems [6, 13, 40] or social
media [10, 27], to collaboratively leverage the capabilities of ML
models in a privacy-preserving and scalable manner. Notable DL
algorithms include Asynchronous decentralized parallel stochastic
gradient descent (AD-PSGD) [39], Gossip learning (GL) [47], and
Epidemic learning (EL) [12].

It is natural for nodes in any real-world network to have different
computation and communication speeds. While the focus on DL
has been surging due to its wide range of applicability [7], most
existing works in DL consider a synchronous system without the
presence of stragglers, i.e., nodes with slower compute or commu-
nication speeds than others [9, 12, 18, 39, 43, 54]. In synchronous
DL approaches such stragglers can significantly prolong the time
required for model convergence as the duration of a single round
is typically determined by the slowest node [38]. Ensuring quick
model convergence in the presence of stragglers and reducing their
impact is crucial to improving the practicality of DL systems.

This work deals with communication stragglers in DL. This form
of system heterogeneity is particularly present in web-based sys-
tems where nodes are geographically distributed and inherently
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have variable network speeds, resulting in delayed communica-
tions [20]. For instance, the network speeds of web-connected mo-
bile devices can differ by up to two orders of magnitude [35]. Even
when nodes are deployed over cross-region AWS instances, their
network bandwidth can vary by up to 20× [20].

In the context of DL, this variability in communication speed
results in slower model convergence. In most DL algorithms, a
node sends its full model to a few other nodes (Fig. 2, left). Nodes
with slow network links require more time to transfer larger mod-
els, which can lead to two negative outcomes for their parameter
updates: (i) they are received later and become stale by the time
they are merged, or (ii) they are ignored entirely as the recipient
proceeds with aggregation without waiting for the contributions
of slow nodes. Additionally, from the perspective of a sending
node with a fast network link, a slow recipient can block valuable
bandwidth. In many DL algorithms, a recipient only proceeds with
aggregation after receiving the full model. Rather than communi-
cating with faster nodes, the sender must wait, further exacerbating
the straggling effect and hindering system performance.

We highlight the impact of communication stragglers in DL
with an experiment where we measure the model convergence
of AD-PSGD [39] and Swift [9], two state-of-the-art asynchro-
nous DL algorithms, in a 60-node network. We consider an image
classification task with the CIFAR-10 dataset [34] and use a non
independent and identically distributed (non-IID) data partition-
ing [14, 42]. Fig. 1 shows the test accuracy of AD-PSGD and Swift
over time, without communication stragglers (green curves) and
with communication stragglers (red curves) where half of the nodes
have 5× slower network speeds than others. For both AD-PSGD
and Swift, we observe a significant reduction in model conver-
gence speeds. To reach 56 % test accuracy, AD-PSGD and Swift
require 1.9× and 2.2× more time, respectively, in the presence of
communication stragglers compared to when they are absent.

To address this issue, we introduce DivShare: a novel asynchro-
nous DL algorithm. DivShare converges faster and achieves better
test accuracy compared to state-of-the-art baselines in the presence
of communication stragglers. Specifically, after finishing their local
training (computation), nodes in DivShare fragment their models
into small pieces and share each fragment independently with a
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Figure 1: The convergence plots for AD-PSGD and Swift on

CIFAR-10, with and without communication stragglers.
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Figure 2: Model sharing in DL (left) and DivShare (right),

from the perspective of a single node. DivShare fragments

models and sends each fragment to randomly selected nodes.

random set of other nodes (Fig. 2, right). Transferring smaller frag-
ments allows nodes with slow network links to quickly contribute
at least with some of their model parameters. Furthermore, the
independent dissemination of fragments to random sets of nodes
enables more efficient use of the collective bandwidth as model
parameters reach a bigger stretch of the network. As a result, Di-
vShare exhibits stronger straggler resilience and attains higher
model accuracy compared to other asynchronous DL schemes.

Contributions. Our work makes the following contributions:

(1) We introduce DivShare, a novel asynchronous DL approach
that enhances robustness against communication stragglers
by leveraging model fragmentation (Sec. 3).

(2) We provide a theoretical proof of the convergence guaran-
tee for DivShare (Sec. 4). To the best of our knowledge,
we are the first to present a formal convergence analysis in
DL that captures the effect of asynchronous communication
with delays. In particular, the convergence rate is influenced
by the number of participating nodes, the properties of the
local objective functions and initialization conditions, the
parameter-wise communication rates, and the communica-
tion delays in the network.

(3) We implement and evaluate DivShare1 on two standard
learning tasks (image classification with CIFAR-10 [34] and
recommendationwithMovieLens [21]) and against two state-
of-the-art asynchronous DL baselines: AD-PSGD and Swift
(Sec. 5). We demonstrate that DivShare is much more re-
silient to the presence of communication stragglers com-
pared to the competitors and show that DivShare, with
communication stragglers, speeds up the time to reach a
target accuracy by up to 3.9× compared to AD-PSGD on the
CIFAR-10 dataset. Compared to both baselines, DivShare
also achieves up to 19.4% better accuracy and 9.5% lower test
loss on the CIFAR-10 and MovieLens datasets, respectively.

2 Background and preliminaries

This work focuses on a scenario where multiple nodes collabo-
ratively train ML models. This approach is often referred to as
collaborative machine learning (CML) [48, 52]. In CML algorithms,
each node maintains a local model and a private dataset. The pri-
vate dataset is used to compute model updates and remains on the
node’s device throughout the entire training process.

1Source code available at https://doi.org/10.5281/zenodo.14733178.

https://doi.org/10.5281/zenodo.14733178
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2.1 Synchronous and asynchronous DL

Decentralized learning (DL) [4, 38, 44] is a type of CML algorithm
in which nodes exchange model updates directly with other nodes.
The majority of DL algorithms are synchronous, meaning they rely
on global rounds where nodes perform computations in parallel,
followed by communication with neighbors. In each round, nodes
generally train their model using local data, exchange them with
neighbors, and aggregate them before starting the next round. This
synchronized process ensures consistency and predictable model
convergence since the system progresses in synchronized rounds.
However, this process also introduces inefficiencies in the pres-
ence of slower nodes (stragglers) as the system needs to wait for
the slowest node to complete its computation and communication
before progressing to the next round [17]. Thus, synchronous DL
approaches can suffer from significant delays, particularly in set-
tings with high variability in computing or communication speeds.

In contrast, asynchronous DL algorithms forego the notion of
synchronized rounds allowing nodes to make progress indepen-
dently [3]. Thus, faster nodes can continue updating and sending
their models independently, which helps to mitigate the delays
caused by stragglers. Designing asynchronous DL algorithms is a
recent and emerging area of research [5, 9, 17, 41]. However, this
asynchrony introduces new challenges. For instance, slower nodes
spread possibly outdated model updates and slow down conver-
gence for the entire network. The performance of local models can
also get biased towards the faster nodes as their parameters are
shared and mixed faster than those of the slower nodes.

2.2 System model

Our study specifically tackles the issue of communication delays in
DL. We assume a setting where geo-distributed nodes communicate
their locally trained models at their own pace independent of each
other. We design DivShare to be deployed within a permissioned
network setting where node participation is static. This assumption
is consistent with the observation that DL is commonly used in
enterprise settings, where participation is often controlled [7, 8, 12].
Nodes also remain online throughout the training process. Further-
more, we assume that nodes in DivShare faithfully execute the
algorithm and consider threats such as privacy or poisoning attacks
beyond scope. For clarity and presentation, we assume the nodes
have comparable computation infrastructure that allows them to
compute (e.g., perform their local training and model aggregation)
at the same speed. We further discuss this aspect in Appendix E.

3 Design of DivShare

We first describe the high-level operations of DivShare in Sec. 3.1
and then provide a detailed algorithm description in the remaining
subsections. A summary of notations is provided in Appendix A.

3.1 DivShare in a nutshell

The main idea of DivShare is that nodes fragment their model and
send these fragments to a diverse, random set of other nodes. Shar-
ing models at a finer granularity allows communication stragglers
to contribute at least some of the model parameters quickly while
still allowing nodes with fast communication to disseminate all
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...

Training Aggregate

Train Train Train ...

...

Node Ni (fast communication)

Send
Fragment

Unsent
Fragment

Time

Node Nj (slow communication)

Time

Fragment
Model

Figure 3: Timeline of computation and communication op-

erations in DivShare during three local rounds, from the

perspective of a node with fast (top) and slow (bottom) com-

munication. Fragments are the same number of bytes.

their model fragments, mitigating bias towards faster nodes. Frag-
mentation is also motivated by our observations that, for an equal
amount of communication, sending smaller model parts to more
nodes results in quicker convergence than sending full models to a
few nodes (see Sec. 5.3). We illustrate the workflow of DivShare
in Fig. 3 where we show a timeline of operations for two nodes:
𝑁𝑖 with fast and 𝑁 𝑗 with slower communication speeds. The com-
putation and communication operations are shown in the top and
bottom rows for each node, respectively, where the 𝑘th local round
of node 𝑁𝑖 is denoted by 𝑡𝑖

𝑘
.

During a local round, each node maintains a receive buffer for
received model parameters and a send queue for model fragments
paired with destination identifiers, awaiting transmission. In each
round, independently of others, a node 𝑁𝑖 : (i) aggregates the model
fragments received in local round 𝑡𝑖

𝑘−1 (purple in Fig. 3); (ii) carries
out SGD steps for local training (green); (iii) fragments the updated
model to share in the next round (yellow); and (iv) clears the
send queue and adds new pairs of model fragments and receiver
identifiers. During steps (ii) and (iii), 𝑁𝑖 continues communicating
fragments of its model from local round 𝑡𝑖

𝑘−1 at its own pace.
Each blue block in Fig. 3 indicates the transfer of a fragment

to another node. We note that node 𝑁 𝑗 with slow communication
speedsmay onlymanage to send a few fragments before it computes
freshly updated model fragments, which then causes a flush of the
send queue. This scenario is illustrated in Fig. 3, where unsent
fragments are shown in red.

3.2 Problem formulation

Decentralized learning. We consider a set of 𝑛 ≥ 2 nodes N =
{𝑁1, . . . , 𝑁𝑛}, where 𝑁𝑖 denotes the 𝑖th node in the network for
every 𝑖 ∈ [𝑛], who participate in this collaborative framework to
train their models. Z denoting the space of all data points, for
each 𝑖 ∈ [𝑛], let 𝑍𝑖 ⊂ Z, with |𝑍𝑖 |< ∞, be the local dataset of
𝑁𝑖 . Let 𝑁𝑖 ’s data be sampled from a distribution D (𝑖 ) overZ and
this may differ from the data distributions of other nodes (i.e., for
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Algorithm 1: Local rounds in DivShare from the perspec-
tive of node 𝑁𝑖
1 Initialize 𝑥 (𝑖,0)
2 for 𝑘 = 1, . . . , 𝜏 do
3 𝑥 (𝑖,𝑘 ) ← aggregate 𝑥 (𝑖,𝑘−1) and parameters in InQueue
4 InQueue[ 𝑗]← ∅ for 𝑗 in 𝑖𝑛𝑄𝑢𝑒𝑢𝑒 .keys()
5 𝜉

(𝑘)
𝑖 ← mini-batch sampled from 𝑍𝑖

6 𝑥 (𝑖,𝑘,0) = 𝑥 (𝑖,𝑘 )
7 for ℎ = 1, . . . , 𝐻 do

8 𝑥 (𝑖,𝑘,ℎ) ← 𝑥 (𝑖,𝑘,ℎ−1) − 𝜂∇𝑓 (𝑖 )
(
𝑥 (𝑖,𝑘,ℎ−1), 𝜉 (𝑘)

𝑖

)
9 fragmentModel

(
𝑥 (𝑖,𝑘,𝐻 )

)
// See Alg. 2

10 return 𝑥 (𝑖,𝜏 )

each 𝑧 ∈ 𝑍𝑖 , 𝑧 ∼ D (𝑖 ) ). Staying consistent with the standard DL
algorithms, we allow each node to have their local loss functions
that they wish to optimize with their personal data. In particular,
setting 𝑑 ∈ N as the size of the parameter space of the models, for
every 𝑖 ∈ [𝑛], let 𝑓 (𝑖 ) : R𝑑 × Z ↦→ R≥0 be the loss function of
node 𝑁𝑖 and it aims to train a model 𝑥 that minimizes 𝑓 (𝑖 ) (𝑥) =
E𝑧∼D (𝑖 )

[
𝑓 (𝑖 ) (𝑥, 𝑧)

]
. In practice, in every local round 𝑘 , for its local

training, each node independently samples a subset, referred to as
a mini-batch, of points from their personal dataset and seeks to
minimize the average loss for that mini-batch by doing SGD steps
with a learning rate 𝜂 > 0. Hence, for any 𝑖 ∈ [𝑛], letting 𝜉 (𝑘)

𝑖 to
be the mini-batch sampled by 𝑁𝑖 in its local round 𝑡𝑖

𝑘
, we abuse

the notation of 𝑁𝑖 ’s local loss for a single data point to denote the
average loss for the entire mini-batch 𝜉 (𝑘)

𝑖 computed for any model
𝑥 ∈ R𝑑 given by 𝑓 (𝑖 ) (𝑥, 𝜉 (𝑘)

𝑖 ) = 1
|𝜉 (𝑘)
𝑖 |

∑
𝑧∈𝜉 (𝑘)

𝑖
𝑓 (𝑖 ) (𝑥, 𝑧). The training

objective of DivShare is to collaboratively train the optimal model
𝑥∗ ∈ R𝑑 that minimizes the global average loss:

𝑥∗ = arg min
𝑥∈R𝑑

𝐹 (𝑥 ), where 𝐹 (𝑥 ) =
∑︁
𝑖∈[𝑛]

𝑓 (𝑖 ) (𝑥 ).

Asynchronous framework. For any given 𝑖 ∈ [𝑛] and 𝑘 =
1, 2, . . ., while local rounds 𝑡𝑖0 < 𝑡𝑖1, . . . capture each node’s progress
in its compute operations and communication (as described in
Sec. 3.1), we introduce the notion of global rounds to track the
network’s overall training progress. Similar to the formalization
made by Even et al. [17], we define global rounds𝑇0 < 𝑇1 . . . , where
at each 𝑇𝑘 , a non-empty subset of nodes update their models (i.e.,
aggregate received models, perform local SGD steps, and fragment
the updated model). Between two global rounds, 𝑇𝑘 and 𝑇𝑘+1, none
to plenty of communication may asynchronously occur between
nodes. We assume that communication times between any pair of
nodes are independent and directional. That is, for any two nodes
𝑁𝑖 , 𝑁 𝑗 ∈ N , the time it takes for 𝑁𝑖 to communicate with 𝑁 𝑗 may
differ from the time it takes for 𝑁 𝑗 to communicate with 𝑁𝑖 .

In order to lay down the algorithmic workflow of DivShare, for
every 𝑖 ∈ [𝑛], let the model held by node 𝑁𝑖 in global round 𝑇𝑘 for
𝑘 ∈ {0, 1, . . .} be denoted by 𝑥 (𝑖,𝑘 ) ∈ R𝑑 with 𝑥 (𝑖,𝑘 )𝜄 being the 𝜄th
parameter of 𝑥 (𝑖,𝑘 ) for each 𝜄 ∈ [𝑑].

Algorithm 2: Model fragmentation in DivShare from the
perspective of node 𝑁𝑖
Require :Fragmentation fraction Ω, nodes N , number of

fragment recipients 𝐽 , sending queue OutQueue
1 Procedure fragmentModel(𝑥):
2 OutQueue← ∅
3 Fragment 𝑥 into

⌈ 1
Ω
⌉
fragments

4 for each fragment 𝑓 do
5 𝑆 ← Sample 𝐽 random nodes from N
6 for each sampled node 𝑁 𝑗 in 𝑆 do

7 OutQueue.add(( 𝑗, 𝑓 ))
8 shuffle(OutQueue)

3.3 The DivShare algorithm

We now formally describe the DivShare algorithm from the per-
spective of node 𝑁𝑖 . A node in DivShare executes three processes
in parallel and independently of other nodes: (𝑖) model aggrega-
tion, training and fragmentation (computation tasks, see Alg. 1 and
Alg. 2), (𝑖𝑖) model receiving (Alg. 3), and (𝑖𝑖𝑖) model sending (Alg. 3).
As mentioned before, each node keeps track of a receive buffer with
incoming model fragments it has received during a local round,
referred to as InQueue, and a send queue with model fragment and
node destination pairs, referred to as OutQueue.

Computation tasks. We formalize the computation tasks that
a node 𝑁𝑖 ∈ N conducts in Alg. 1. 𝑁𝑖 first initializes model 𝑥 (𝑖,0) ,
and all nodes independently do this model initialization. In each
of the 𝑘 = 1, . . . ,𝑇 local rounds, where 𝑇 is a system parameter,
𝑁𝑖 first performs parameter-wise aggregation of all parameters in
𝑥 (𝑖,𝑘−1) and all received fragments present in InQueue that were
received in the previous round with uniform weights (Line 3). We
note that the count of each received parameter by 𝑁𝑖 may differ.
𝑁𝑖 then resets InQueue (Line 4) and starts updating its model by
performing 𝐻 local SGD steps using a mini-batch sampled from its
local dataset. The resulting model 𝑥 (𝑖,𝑘 ) is then fragmented (Line 9),
and the fragments are shared with other nodes in parallel to the
computation during the next local round (as shown in Fig. 3).

Alg. 2 outlines how nodes in DivShare fragment their models
and fill the send queue. Model fragmentation is dictated by the
fragmentation fraction Ω, which specifies the granularity at which
a model is fragmented. Specifically, a model is fragmented in

⌈ 1
Ω
⌉

fragments. In this paper, we stick to randomized fragmentation,
where each fragment is a random and disjoint subset of model pa-
rameters. This resembles random sparsification, a technique used
in CML to reduce communication costs [8, 15, 23, 31, 53]. For each
fragment 𝑓 , we uniformly randomly sample 𝐽 other nodes to send
this fragment to (Line 5), and add each recipient node 𝑁 𝑗 and the
corresponding fragment as tuple ( 𝑗, 𝑓 ) to sending queue. Finally,
we shuffle the order of (destination, fragment) pairs in the send-
ing queue. This shuffling is important to ensure that slow nodes
send diverse sets of model parameters within a single, local round.
While we uniformly randomly fragment the models and shuffle the
sending queue in our experiments, we acknowledge that different
strategies can be used, e.g., we could prioritize the sending of more
important parameters as done in sparsification [2, 15, 30].
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Communication tasks. For every 𝑖, 𝑗 ∈ [𝑛] with 𝑖 ̸= 𝑗 , when
receiving a model fragment 𝑓 from 𝑁 𝑗 , 𝑁𝑖 adds the parameters
in 𝑓 to the receive buffer InQueue, associated with node 𝑁 𝑗 . If a
parameter 𝜄 is received twice from 𝑁 𝑗 during a particular local
round, the older parameter 𝐼𝑛𝑄𝑢𝑒𝑢𝑒[ 𝑗][𝜄] will be replaced with the
latest one. In addition, 𝑁𝑖 runs a sending loop where it continuously
sends information in OutQueue. Specifically, 𝑁𝑖 pops the tuple ( 𝑗, 𝑓 )
from OutQueue and sends fragment 𝑓 to node 𝑁 𝑗 . Due to space
constraints, we provide the associated logic in Alg. 3 in Appendix D.

4 Convergence analysis

In this section, we theoretically analyze the convergence guarantees
of DivShare from the perspective of the global rounds. As discussed
in previous works on asynchronous decentralized optimization [17,
32], in order to allow the nodes to hold heterogeneous data and their
individual local objective functions, we need to make assumptions
on the computation sampling. In particular, recalling that this work
focuses on communication straggling in the network, we assume
computation homogeneity i.e., every node computes in each round.

Notations. ∥·∥ denotes the Euclidean norm for a vector and the
spectral norm for a matrix. A function 𝑓 is convex if for each 𝑥,𝑦
and subgradient 𝑔 ∈ 𝜕𝑓 (𝑥 ), 𝑓 (𝑦) ≥ 𝑓 (𝑥 )+ ⟨𝑔,𝑦−𝑥⟩. When 𝑓 and 𝑓 (𝑖 )
are convex, we do not necessarily assume they are differentiable,
but we abuse notation and use ∇𝑓 (𝑥, 𝜉) and ∇𝑓 (𝑖 ) (𝑥) to denote an
arbitrary subgradient at 𝑥 . 𝑓 is 𝐵-Lipschitz-continuous if for any
𝑥,𝑦 ∈ R𝑑 and 𝑧 ∈ Z, |𝑓 (𝑥, 𝑧) − 𝑓 (𝑦, 𝑧)|≤ 𝐵∥𝑥 − 𝑦∥. 𝑓 is 𝐿-smooth if
it is differentiable and its gradient is 𝐿-Lipschitz-continuous.

We assume that in each round every node independently con-
nects with other nodes to share each of its model fragments. In
particular, for any 𝑖, 𝑗 ∈ [𝑛], let the probability that 𝑁 𝑗 shares each
of its model fragments with 𝑁𝑖 be 𝐽

𝑛−1 , making 𝐽 the expected
number of nodes that receive each of 𝑁 𝑗 ’s model parameters.

To capture the effect of communication stragglers, let 𝑘 𝑗𝑖 de-
note the number of global rounds it takes for node 𝑁 𝑗 to send
one of its model fragments to node 𝑁𝑖 . Consequently, define 𝐾𝑗 =
max1≤𝑖≤𝑛 𝑘 𝑗𝑖 as the maximum delay for node 𝑁 𝑗 to communicate
with its neighbors, 𝐾 = max1≤ 𝑗≤𝑛 𝐾𝑗 as the global maximum com-
munication delay, and 𝑇 = ∑

1≤ 𝑗≤𝑛 𝐾𝑗 as the total communication
delay. We assume 𝐾 (and, therefore, 𝑇 ) to be finite. For any 𝜄 ∈ [𝑑],
the model update 𝑥 (𝑖,𝑘 )𝜄 is aggregated as:

𝑥
(𝑖,𝑘 )
𝜄 = 1

1 + 𝑅𝑖,𝑘𝜄

∑︁
1≤ 𝑗≤𝑛

𝑥
( 𝑗,𝑘−𝑘 𝑗𝑖 )
𝜄 1

(
𝐴
𝑗,𝑘−𝑘 𝑗𝑖 ,𝑖
𝜄

)
(1)

where 𝑅𝑖,𝑘𝜄 = ∑
1≤ 𝑗≤𝑛,𝑗 ̸=𝑖 1

(
𝐴
𝑗,𝑘−𝑘 𝑗𝑖 ,𝑖
𝜄

)
with 𝐴 𝑗,𝑘−𝑘 𝑗𝑖 ,𝑖𝜄 being the

event where 𝑁 𝑗 shared its model parameter 𝜄 in a fragment with
𝑁𝑖 in round 𝑘 − 𝑘 𝑗𝑖 . Note that 1 + 𝑅𝑖,𝑘𝜄 is the normalization factor
and is always greater than 1 as the buffer always contains the 𝑁𝑖 ’s
own model.

We refer to 𝑋𝑘𝜄 =
(
𝑥
(𝑖,𝑘−𝑘𝑖 )
𝜄

)
1≤𝑖≤𝑛,

1≤𝑘𝑖≤𝐾𝑖

as the sliding window of

the network-wide 𝜄th model parameter containing all the informa-
tion needed to generate a new global step in the algorithm, we
enable ourselves to write losses on the sliding window as the vec-
tor of the losses. This communication step can be encoded by a
random matrix𝑊 𝑘

𝜄 representing the shift of the sliding window

from
(
𝑥
(𝑖,𝑘−𝑘𝑖 )
𝜄

)
1≤𝑖≤𝑛,

1≤𝑘𝑖≤𝐾𝑖

to
(
𝑥
(𝑖,𝑘+1−𝑘𝑖 )
𝜄

)
1≤𝑖≤𝑛,

1≤𝑘𝑖≤𝐾𝑖

by generating a

new step using Eq. (1). Setting 𝛼 𝑗,𝑘−𝑘 𝑗𝑖 ,𝑖𝜄 =
1
(
𝐴

𝑗,𝑘−𝑘𝑗𝑖 ,𝑖
𝜄

)
1+𝑅𝑖,𝑘𝜄

as the initial

weight, for every 𝑖, 𝑗 ∈ [𝑛] and 1 ≤ 𝑘 𝑗 ≤ 𝐾𝑗 , formally𝑊 𝑘
𝜄 can be

expressed as:(
𝑊 𝑘
𝜄

)
(𝑖,𝑘𝑖 ),(𝑗,𝑘 𝑗 )

=

𝛿𝑖, 𝑗𝛿𝑘𝑖−1,𝑘 𝑗

1
1+𝑅𝑖,𝑘𝜄

if 2 ≤ 𝑘𝑖 ≤ 𝐾𝑖
𝛿𝑘 𝑗 ,𝑘 𝑗𝑖𝛼

𝑗,𝑘−𝑘 𝑗𝑖 ,𝑖
𝜄 when 𝑘𝑖 = 1

(2)

where, for any𝛼, 𝛽 ∈ R,𝛿𝛼,𝛽 is equal to 1when𝛼 = 𝛽 , or 0 otherwise.

For any 𝑘 ≥ 𝐾 and �̃� ≥ 1, let𝑊 (𝑘 :𝑘+�̃�−1)
𝜄 =

(
𝑊 𝑘+�̃�−1
𝜄 . . .𝑊 𝑘

𝜄

)
.

To develop the theoretical study of convergence of DivShare,
in addition to assuming the existence of the minimum of the loss
function 𝐹 , wemake the standard set of assumptions (Assumptions 1
to 3) that are widespread in related works [8, 16, 17] and introduce
Assumption 4 that is specific to the environment with asynchronous
and delayed communication that we are considering.

Assumption 1 (Condition on the objective). Denoting the minimum
loss over the entire model space as 𝐹 ∗ = min𝑥∈R𝑑 𝐹 (𝑥 ), let ∆ be an
upper bound on the initial suboptimality, i.e., ∆ ≥

𝐹 (
𝑋 (0)

)
− 𝐹 ∗1

,
and let𝐷 be an upper bound on the initial distance to the minimizer,
i.e., 𝐷 ≥ min

𝑋 (𝐾 ) − (𝑥∗)1
, where 𝑥∗ = arg min𝑥∈R𝑑 𝐹 (𝑥) is the

model that minimizes the loss and is assumed to exist.

Assumption 2 (Condition on gradients). There exists 𝜎2 > 0 such
that for all 𝑥 ∈ R𝑑 , 𝑖 ∈ [𝑛], we have E𝜉∼D (𝑖 )

[
∇𝑓 (𝑖 ) (𝑥 , 𝜉 )

]
=

∇𝑓 (𝑖 ) (𝑥 ) and E𝜉∼D (𝑖 )
[∇𝑓 (𝑖 ) (𝑥 , 𝜉) − ∇𝑓 (𝑖 ) (𝑥 )

2
]
≤ 𝜎2.

Assumption 3 (Heterogeneous setting). There exists 𝜁 2 > 0 such
that the population variance is bounded above by 𝜁 2, i.e., for all
𝑥 ∈ R𝑑 , we have ∑

𝑖∈[𝑛]
∇𝑓 (𝑖 ) (𝑥 ) − ∇𝐹 (𝑥 )

2
≤ 𝜁 2.

Assumption 4 (Straggling-communication balance). For any 𝑖 ∈ [𝑛]
and 𝑘 ∈ Z≥0, let 𝛼(1) = E

[
1

1+𝑅𝑖,𝑘
]

= 𝑛−1
𝐽 𝑛

(
1 −

(
1 − 𝐽

𝑛−1

)𝑛)
and

𝛼 = 1
𝑛−1

(
1 − 𝛼(1)

)
. Then we assume that (𝑇 − 𝑛)

(
(𝛼𝑛)2

𝑇 + 𝛼2
(1)

)
< 1.

Remark 1. Observing that 𝑇 − 𝑛 equals 0 when the system is syn-
chronous and increases as the sum of the delays grows, it effectively
parameterizes the total amount of straggling in the system. On the
other hand, the term

(
(𝛼𝑛)2

𝑇 + 𝛼2
(1)

)
can be interpreted as the commu-

nication rate – it decreases as 𝐽 , the expected number of neighbors
to which a node sends each of its model parameters, increases.
This implies that communication speeds up as nodes engage in
more frequent interactions within the network. Assumption 4 es-
sentially strikes a balance by bounding the combined effects of
straggling and the communication rate in the network. Appendix G
discusses the asymptotic properties of Assumption 4 and provides
analytical insights into the relationship between the average com-
munication delays and the number of nodes in the network. This,
in turn, demonstrates the practicality of adopting Assumption 4 in
real-world settings and highlights the robustness of DivShare in
handling communication stragglers.
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Theorem 1 (Convergence of DivShare). Under Assumptions 1 to 4

and if 𝑓 (𝑖 ) is 𝐿-smooth for all 𝑖 ∈ [𝑛], then E
[

1
�̃�

∑
𝑘<�̃�

∇𝐹 (
𝑋𝑘

)2
]

= O
©«
(
�̂�

(
𝜎2 + 𝜁 2)
�̃�

) 1
2

+
(
𝑛�̂�

√︁
𝜎2Λ + 𝜁 2Λ2

�̃�

) 2
3

+
�̂�

(
𝑛−

1
2 + Λ

)
𝑛�̃�

ª®®¬ ,
where 𝜆2 = ∥E [𝑊 ] Π𝐹 ∥ with Π𝐹 being the canonical projector
on 𝐹 = 1⊥, Λ = (𝛼 |log(𝜆2) | + (1 − 𝛼) log(𝑇 )) 𝛼−1 |log(𝜆2) |−2, and
�̂� = 𝐿∆. The proof is postponed to Appendix F.

Remark 2. Th. 1 essentially shows how fast the average model of
all the nodes parameter-wise converges. First, the slowest term,
number-of-steps wise, does not depend on Λ thus on the delays,
achieving the sub-linear rate of O

(
1/

√︁
�̃�

)
rounds, optimal for SGD,

we achieve this by considering the convergence over a time sliding-
window. For the numerators of the second and third terms, the rate
is encoded in Assumption 4 with the coefficient Λ going to zero as
(𝑇 − 𝑛)

(
(𝛼𝑛)2

𝑇 + 𝛼2
(1)

)
goes to 0 (see Eq. (4) in Appendix F).

5 Evaluation

We now describe our experimental setup (Sec. 5.1), compare Di-
vShare to baselines (Sec. 5.2), evaluate the sensitivity of DivShare
to its parameters (Sec. 5.3), and quantify the performance of Di-
vShare and baselines in real-world network conditions (Sec. 5.4).

5.1 Experimental setup

Implementation. We implement DivShare in Python 3.8 over
DecentralizePy [14] and PyTorch 2.1.1 [49] to emulate DL nodes.
For emulating communication stragglers, we used the Kollaps [19]
network simulator to control the latency and bandwidth of each
network link.

Network setup. We conduct experiments with 60 nodes that
can communicate with all other nodes. Unless otherwise stated, we
group nodes into fast and straggler nodes. We set a fixed bandwidth
and latency (1 ms) for all fast nodes. The mean bandwidth of fast
nodes is set at 60 MiB/s and 200 MiB/s for all the experiments
involving the CIFAR-10 and MovieLens dataset, respectively. To
systematically study the effect of varying degrees of straggling, we
introduce a (communication) straggling factor 𝑓𝑠 . The bandwidth
of the straggler nodes is sampled from a normal distribution with
a mean 𝑓𝑠 times lower than the bandwidth of fast nodes and a
standard deviation of 0.5.

Baselines. We compare DivShare to two state-of-the-art asyn-
chronous DL algorithms: Swift [9] and AD-PSGD [39]. AD-PSGD
is a standard asynchronous DL algorithm where nodes, similar to
DivShare, independently progress in local rounds. In each local
round of AD-PSGD, a node 𝑁𝑖 updates its model and selects a sin-
gle neighbor 𝑁 𝑗 , after which 𝑁𝑖 and 𝑁 𝑗 bilaterally average their
local models. Swift also allows nodes to work at their own speed.
However, unlike AD-PSGD, Swift operates in a wait-free manner,
i.e., nodes do not wait for simultaneous averaging among nodes.
Instead, a node asynchronously aggregatesmultiplemodels it has re-
ceived from its neighbors, eliminating the need for synchronization.
Moreover, Swift uses a non-symmetric and non-doubly stochastic
communication matrix, updated dynamically during training.

For DivShare, we use a fragmentation fraction Ω = 0.1, unless
specified otherwise. Thus, each node splits its model into 10 equally-
sized fragments before sending these to other nodes (see Alg. 2). We
set a degree of 𝐽 = ⌈log2(𝑛)⌉ = 6 for DivShare, a common choice
in random topologies [12], i.e., each node sends each fragment to 6
other nodes every local round. We use the same model exchange
characteristics for Swift, i.e., each node sends its full model to 6
other nodes every local round.

Task.We evaluate DivShare and baselines over two common
learning tasks: image classification and movie recommendation.
For the former, we use the CIFAR-10 [34] dataset and a GN-LeNet
model [24, 37]. We introduce label heterogeneity by splitting the
dataset into small shards and assigning each node a uniform share
of the shards [14, 15, 42]. This partitioning ensures that each node
receives the same number of training samples, but the number
of shards allows us to control the heterogeneity: the higher the
number of shards, the more uniform the label distribution becomes.
Unless stated otherwise, we assign 5 shards to each node. For the
recommendation task, we use the MovieLens 100K [21] dataset
and a matrix factorization model [33]. For CIFAR-10, we report the
average top-1 test accuracy, while for MovieLens, we report the
MSE loss between the actual and predicted ratings. We run each
experiment 3 times with different seeds and present the averaged
results. We provide additional experiment details in Appendix B.

5.2 Convergence of DivShare against baselines

We first evaluate the convergence of DivShare against the base-
lines. Fig. 4 shows the evolution of model utility over time, for
both CIFAR-10 and MovieLens, in a setting without stragglers (with
𝑓𝑠 = 1) and where half of the nodes are stragglers (with 𝑓𝑠 = 5). Both
baselines show comparable performance in all settings. We also
observe that communication stragglers significantly slow the con-
vergence of both AD-PSGD and Swift. Specifically, in the presence
of communication stragglers, the baselines reach 12.5% and 10.2%
worsemodel utilities in CIFAR-10 andMovieLens, respectively, com-
pared to the scenario without stragglers. DivShare outperforms
both baselines in terms of the speed of convergence and model test
utility across both datasets. The superior performance of DivShare
is especially evident in the presence of stragglers, achieving up to
19.4% relatively better accuracy and 9.5% lower test loss for the
CIFAR-10 and MovieLens datasets, respectively. We attribute this
to the ability of DivShare to effectively aggregate models in small
fragments and use the available bandwidth effectively.

5.3 Sensitivity analysis

In the following, we analyze the effect of the straggling factor 𝑓𝑠 ,
varying levels of non-IIDness, and the fragmentation fraction Ω on
the performance of DivShare and baselines.

Varying the degree of communication straggling. We next
explore the effect of the straggling factor 𝑓𝑠 and varying number of
stragglers on the performance of AD-PSGD and DivShare. Fig. 5
shows the heatmaps for the (a) final test accuracy after 15 min and
(b) wall-clock time to achieve 60% test accuracy on CIFAR-10 for a
varying number of stragglers and increasing 𝑓𝑠 . Similar to Fig. 4,
we observe that stragglers hinder the convergence of AD-PSGD.
With only 𝑛/8 (7 of the 60) nodes being stragglers, increasing 𝑓𝑠



Boosting Asynchronous Decentralized Learning with Model Fragmentation WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

0 4 8 12
20

40

60

Te
st
ac
cu
ra
cy
[ %
] Without stragglers

DivShare Swift AD-PSGD

0 4 8 12
20

40

60

With stragglers

0 4
1

2

3

Wall-clock time [min]

Te
st
lo
ss

0 4
1

2

3

CIFAR-10

MovieLens

Figure 4: The model utility over time with and without strag-

glers on CIFAR-10 (↑ is better) and MovieLens (↓ is better).

1 2 3 4 5

𝑛/2

𝑛/4

𝑛/8

65.2

65.4

65.3

63.5

64.9

65

62.5

63.7

65

59.9

62.8

64.1

56.4

60.9

63.5

N
um

be
r
of

st
ra
gg
le
rs

(a) Accuracy after convergence [%]

60

65

70

1 2 3 4 5

𝑛/2

𝑛/4

𝑛/8

5.3

5.3

5.3

7.6

5.7

5.7

9.8

7.6

6.4

12.1

8.3

6.4

∞

11

7.6

(b) Time to 60% accuracy [min]

5
10
15
20

1 2 3 4 5

𝑛/2

𝑛/4

𝑛/8

67.8

68.7

68.9

69.2

69.2

69.1

69

68.7

68.9

68.7

67.6

69

68.4

68.7

68.8

Straggling factor (𝑓𝑠 )

60

65

70

1 2 3 4 5

𝑛/2

𝑛/4

𝑛/8

2.4

2.4

2.4

2.4

2.4

2.4

2.8

2.8

2.4

2.8

2.8

2.8

3.2

2.8

2.8 5
10
15
20

AD-PSGD

DivShare

Darker is better
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from 1 to 5 increases the time to reach the target accuracy by 43.4%.
AD-PSGD is unable to attain the target accuracy of 60% with 𝑛/2
(30 out of 60) stragglers. In contrast, DivShare displays minimal
deviation from an ideal setting without stragglers as the number
of stragglers and 𝑓𝑠 increases. As shown in Fig. 5(a), DivShare
consistently achieves better test accuracy compared to AD-PSGD
and shows a speedup of at least 2.2× over AD-PSGD. In the case of
15 stragglers (𝑛/4) and 𝑓𝑠 = 5, DivShare achieves a speedup of 3.9×
over AD-PSGD to reach the same accuracy. Experiments with the
MovieLens dataset show similar trends (Appendix C). To conclude,
DivShare retains its strong performance even when half of the
nodes are up to 5× slower in communication than the others.

Effect of data heterogeneity. We analyze the effect of varying
levels of data heterogeneity and 𝑓𝑠 on the time-to-accuracy speedup
in DivShare. Fig. 6(a) shows the heatmap of the speedup due to

fragmentation, i.e., the percentage improvement in the time to reach
60% test accuracy for 𝑓𝑠 = 0.1 vs. 𝑓𝑠 = 1 with 30 stragglers. Each row
represents decreasing data heterogeneity, with 10 being almost IID.
Fig. 6(a) reveals that fragmentation in DivShare is advantageous
at all data heterogeneity levels and straggling factors. However, the
speedup owing to fragmentation is amplified at high heterogeneity
levels and high levels of straggling, achieving a speedup of up to 84%.
In other words, as the learning task gets more difficult, DivShare
shows more efficiency and resilience to stragglers.

Limits of fragmentation. The granularity of fragmentation,
controlled by Ω, is an important parameter in DivShare. To un-
derstand the limits of fragmentation in DivShare, we evaluate
DivShare with different values of Ω, ranging from 0.01 to 1, 30
stragglers, and 𝑓𝑠 = 5. Fig. 6(b and c) shows the time required to
reach a target accuracy of 60% on CIFAR-10 without and with strag-
glers. In both cases, as we decrease the Ω from 1, i.e., as nodes start
sending smaller fragments, the convergence speed improves until
Ω = 0.1. With a low Ω value, each node potentially sends a frag-
ment to all other nodes. While further decreasing Ω does not alter
the dissemination of information, it does increase the number of
messages flowing in the system. Therefore, at fragmentation factors
< 0.1, we see a rapid increase in the time to convergence due to
the large number of messages leading to network congestion and
overhead in the case without stragglers. The effect is ameliorated
in the scenario with stragglers (Fig. 6(c)) since the straggling nodes
rarely send out all the fragments in a round.

Varying the straggling factor and fragmentation fraction.

We assess the effects of varying 𝑓𝑠 on the attained model utility and
the time until 60% accuracy is reached on CIFAR-10, for baselines
and DivShare with varying fragmentation fractions. Fig. 6(d and
e) show the final accuracy and the wall-clock time to 60% test ac-
curacy, respectively, on CIFAR-10 for DivShare and the baselines.
Intuitively, the attained final accuracy and the convergence rate
deteriorate for the baselines AD-PSGD and Swift as 𝑓𝑠 increases.
DivShare with Ω = 0.1, however, demonstrates strong robust-
ness to stragglers, achieving almost the same accuracy across the
spectrum at a small increase in the time to target accuracy.

In summary, we observe in Fig. 6(a-d), a sweet spot for Ω in
DivShare around 𝐽/𝑛, corresponding to 0.1 in our experiment
setup. For this value, DivShare exhibits the highest model utility
and convergence speeds on the CIFAR-10 dataset.

5.4 Real-world network evaluation

So far, we have evaluated DivShare and baselines by emulating
communication stragglers using the straggling factor 𝑓𝑠 . We next
evaluate DivShare in a real-world scenario using realistic network
characteristics reported in the work of Gramoli et al. [20]. This
work provides a bandwidth and latency matrix between each pair
of 10 AWS regions [20]. We integrate these matrices in our experi-
ment setup and place 6 random nodes in each region. Fig. 7 shows
the model convergence for CIFAR-10 (left) and MovieLens (right)
for DivShare and baselines. This figure shows that DivShare
outperforms AD-PSGD and Swift on both datasets in terms of con-
vergence time in real-world networks as well. This is particularly
evident on the CIFAR-10 dataset, where DivShare reaches 60%
accuracy, 35.6% faster than baselines.



WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Sayan Biswas et al.

1 2 3 4 5

3
5
7
10

48.1

37.9

34.8

25.7

64.1

52.3

37.7

42.2

77.8

59.7

52

43.4

75.7

69.6

59.2

55.6

73.9

84

63.6

59.1

Straggling factor (𝑓𝑠 )

D
at
a
he

te
ro
ge
ne
it
y

Speedup in time to accuracy
due to fragmentation [%]

40

60

80

0 0.5 1
2

3

4

Fragmentation fraction (Ω)

T
TA

60
%
[ m

in
]

DivShare, no
stragglers, 𝑓𝑠 = 1

0 0.5 1

4

8

16

T
TA

60
%
[ m

in
]

DivShare, with
stragglers, 𝑓𝑠 = 5

1 2 3 4 5

60

65

70

Straggling factor (𝑓𝑠 )

Fi
na

la
cc
ur
ac
y
[ %
] Final accuracy

DivShare, no frag., Ω = 1 DivShare, Ω = 0.1
DivShare, Ω = 0.2 DivShare, Ω = 0.5
Swift AD-PSGD

1 2 3 4 5
2

4

8

16

W
al
l-
cl
oc
k
ti
m
e
[ m

in
]

TTA 60%

(a) (b) (c) (d) (e)

non-iid

iid

Figure 6: (a) Speedup in DivShare due to fragmentation at different levels of data heterogeneity. Darker is better. (b) and (c)
Impact of the fragment fraction Ω on time to accuracy (TTA) with and without stragglers (lowest TTA is achieved around

Ω = 0.1). (d) and (e) Impact of the straggling factor on the final accuracy and time to target accuracy for DivShare and baselines.

0 5 10

40

60

Wall-clock time [min]

Te
st
ac
cu
ra
cy
[ %
]

CIFAR-10

DivShare Swift AD-PSGD

0 2 4 6
1

1.5
2

2.5

Wall-clock time [min]

Te
st
lo
ss

MovieLens

(a) (b)

Figure 7: The model utility of DivShare and baselines over

time, under real-world network conditions [20].

6 Related work

Synchronous DL. Most DL algorithms are synchronous and tend
to perform sub-optimally when faced with variance in computing
and communication speed of nodes. D-PSGD [38] remains a widely
used synchronous DL baseline, where nodes perform model up-
dates in lockstep. To improve model convergence time, numerous
approaches optimize the communication topology before train-
ing begins [36, 51, 57] or dynamically throughout training [12].
DivShare, in contrast, is an asynchronous DL algorithm.

Asynchronous DL. Early works in asynchronous optimization
focus on improving convergence rates in distributed settings [3,
46, 56]. Asynchronous methods have more recently also been ap-
plied to DL. Solutions like AD-PSGD [39], SwarmSGD [43] and
Swift [9] have tackled this problem by allowing nodes to perform
updates independently, thereby avoiding idle time and speeding up
convergence. Gossip learning (GL) is another DL approach where
nodes periodically update their model, send it to another random
node in the network, and use a staleness-aware aggregation method
to merge model updates [22, 47]. Asynchronous DL has also been
explored in wireless and edge computing where system hetero-
geneity is common [28, 29]. Many of the works mentioned above
assume idealized communication scenarios [56], which can lead
to sub-optimal performance under real-world conditions such as

network latency and bandwidth. In contrast, our work is targeted
to real-world geo-distributed networks.

Asynchrony is also a popular research topic in federated learn-
ing (FL) [55]. Asynchronous FL systems such as FedBuff [45],
Payapa [26], Fleet [11], and REFL [1] use staleness-aware parame-
ter aggregation leveraging a central server, ensuring that updates
from slower devices do not adversely affect model performance.
DivShare, in contrast, is a DL algorithm.

Sparsification. Model fragmentation in DivShare is conceptu-
ally similar to sparsification techniques [2, 50]. These techniques
reduce the communication load by sharing only a fixed-size subset
of model parameters. In DivShare, however, nodes share a varying
number of model parameters in a single local round, depending
on their computing and communication speed. Model fragmenta-
tion has also been used to improve privacy in DL [8]. DivShare
instead uses fragmentation to optimize model convergence and add
resilience to communication stragglers.

7 Final remarks

We presented DivShare, a novel and asynchronous DL algorithm
that improves performance and convergence speed, especially in
networks having communication stragglers. The key idea is that
each node fragments its model and sends each fragment to a ran-
dom set of nodes instead of sending the full model. We theoreti-
cally proved the convergence of DivShare by incorporating asyn-
chronous communication with stragglers. Finally, we empirically
demonstrated with two learning tasks that DivShare can achieve
up to 2.2× speedup and 19.4% better accuracy in the presence of
data heterogeneity and up to half of the network straggling.

Number of messages.While DivShare has the same commu-
nication cost as other DL approaches in terms of bytes transferred,
the benefits come at the cost of an increased number of messages
sent by the nodes. Since the nodes transfer large models in DL
training, the increased latency due to the number of messages does
not negatively affect real-world systems, as shown in Sec. 5.4.

No synchronization barriers. In this work, we assumed DL
nodes to have similar hardware and hence, similar compute speeds.
However, DivShare has no synchronization barriers. In our ex-
periments, all nodes run DivShare with similar hardware, but the
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OS scheduling and jitter introduce small drifts in the speeds of the
nodes. Handling nodes with vastly different computation speeds is
an interesting avenue for future research.
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A Table of notations

B Experimental details

Table 1 provides a summary of the datasets we used for our evalu-
ation in Sec. 5, along with various hyperparameters and settings.
We perform experiments on respectively 5 and 10 hyperthreading-
enabled machines, for CIFAR-10 and MovieLens, respectively. Each
machine is equipped with 32 dual Intel(R) Xeon(R) CPU E5-2630
v3 @ 2.40GHz cores. The network speeds of fast nodes, along with
number of rounds and batch size, were tuned (i) to reach the best
performances, (ii) such that in a system without stragglers, the time
to send all the messages from a node is the time to perform one com-
putation round, enabling us, when there are stragglers, to highlight
the straggling effect and the delays induced in the network.

C Additional experiments

Fig. 8 shows the heatmap for the loss after convergence and time
to a target loss for DivShare and AD-PSGD on MovieLens. The
experimental setup is the same as described in Appendix B. We

Notation Description

N Set of all nodes in the network
𝑛 Total number of nodes (i.e., |N |)
𝑁𝑖 Node 𝑖 for 𝑖 = 1, . . . , 𝑛
D (𝑖 ) Data distribution of 𝑁𝑖
𝑍𝑖 Local dataset of 𝑁𝑖
𝑓 (𝑖 ) Local loss function of 𝑁𝑖
𝐹 Global average loss
{𝑡𝑖0, 𝑡𝑖1, . . .} Local rounds of 𝑁𝑖
𝜉

(𝑘)
𝑖 Mini-batch sampled by 𝑁𝑖 in 𝑘th local round
𝜂 Learning rate used for local SGD steps
𝐻 No. of local SGD steps performed by each node
{𝑇0,𝑇1 . . .} Global rounds tracking progress of all nodes
𝑑 size of the parameter space of the models
𝑥 (𝑖,𝑘 ) 𝑁𝑖 ’s model in global round 𝑇𝑘
𝑥
(𝑖,𝑘 )
𝜄 𝜄th parameter of 𝑥 (𝑖,𝑘 ) for all 𝜄 ∈ [𝑑]

Ω Fragmentation fraction for each node
𝐽 No. of nodes each model fragment is shared with
𝑓𝑠 Straggling factor
𝑇 Total communication delay (w.r.t. global rounds)
𝐾 Global maximum communication delay
𝑋

(𝑘)
𝜄 Sliding window of network-wide 𝜄th model pa-

rameter used to generate global round 𝑇𝑘

vary the number of stragglers in the network and the degree of
straggling. Similar to the results in the main text (Sec. 5.3), we
observe that DivShare outperforms the baselines, and the gains
become more significant as the task becomes more difficult (high
straggling).

D Communication logic of DivShare

We provide the communication logic of DivShare in Alg. 3. This
logic shows the procedure called when a node 𝑁𝑖 receives a model
fragment from 𝑁 𝑗 . We also show the sending loop, which is con-
tinuously executed by 𝑁𝑖 . The sending loop obtains a fragment 𝑓
and the index of the recipient node 𝑗 from the OutQueue and then
sends 𝑓 to node 𝑁 𝑗 .

Algorithm 3: Communication logic in DivShare from the
perspective of node 𝑁𝑖
1 Procedure onReceiveFragment(𝑓 , 𝑗):
2 // We received fragment 𝑓 from node 𝑁 𝑗

3 for Parameter 𝜄 in 𝑓 do
4 InQueue[ 𝑗][𝜄]← 𝜄

5 Sending Loop

6 ( 𝑗, 𝑓 )← OutQueue.pop()
7 Send fragment 𝑓 to node 𝑁 𝑗
8 End Loop

E Uniform compute speeds

As the focus of DivShare is on communication stragglers, we fo-
cus on a setting where nodes have uniform compute speeds. We
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Table 1: Summary of datasets and associated hyperparameters used in our evaluation.

Task Dataset Model 𝜂 b

Training Number of rounds Number of Fast nodes

Samples per iteration Iterations Network speed

Image Classification CIFAR-10 GN-LeNet 0.050 8 50 000 128 350 60 Mbps
Recommendation MovieLens Matrix Factorization 0.050 2 70 000 400 650 200 Mbps
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Figure 8: (a) Final test loss after convergence and (b) time to

1.25 test loss on MovieLens with 𝑛 = 60.

argue that in DL environments, it is feasible to control the hard-
ware characteristics of nodes, especially in enterprise networks
where our framework is designed to operate. Nodes can purchase
similar hardware or standardize on specific processing units, thus
achieving roughly uniform compute speeds. Network speeds, how-
ever, are inherently more challenging to control due to factors like
network congestion and geographical distances. This assumption
has enabled the theoretical analysis presented in Sec. 4.

DivShare can function in heterogeneous computing environ-
ments as well. Each node 𝑖 can set the time between two executive
local rounds 𝑡𝑖

𝑘
and 𝑡𝑖

𝑘+1 to the time that the slowest node in the
network requires to update its model. Even if a node with fast com-
puting speed finishes training before the next local round starts,
it can send its model fragments to other nodes. This approach,
however, can introduce idle compute or communication time. We
leave a theoretical and experimental analysis in settings with both
compute and communication stragglers for future work.

F Proof of Theorem 1

We first derive Lem. 2 that shows that the communication matrix
of DivShare satisfies Ergodic mixing and this, in turn, acts as a
crucial intermediate step leading to our main result.

Lemma 2 (Ergodic mixing of DivShare). If Assumptions 3 and 4
hold, we have 𝜆2 < 1 and, for every 𝜌 ∈ (0, 1), setting

𝑘𝜌 =
©«
√︃

2 log(𝑇 ) 1−𝛼
𝛼 +

√︃
2 log(𝑇 ) 1−𝛼

𝛼 + 8 log(𝜆2) log(1 − 𝜌)
2|log(𝜆2) |

ª®®¬
2

,

we have, for every �̃� ≥ 𝑘𝜌 , 𝑘 ≥ 𝐾 , and 𝑋 ∈ R𝑇 :

E

[𝑊 (𝑘 :𝑘+�̃�−1)
𝜄 𝑋 − 𝑋

2
]
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𝑋 − 𝑋2
.

Proof of Lemma 2. Our goal is to show that:

∀𝜌 ∈ (0, 1), ∃�̃� ∈ N ,∀𝑘 ≥ 𝐾,∀𝑋 ∈ R𝑇
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Let 𝐹 = 1⊥, Π𝐹 the canonical projector on 𝐹 (respectively Π1 the
projector on R1) we have for 𝑋 ∈ R𝑇 , 𝑘 ≥ 𝐾
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[using Π1Π𝐹 = 0] (3)

Therefore, an equivalent property is to show that:

∀𝜌 ∈ (0, 1), ∃�̃� ∈ N ,∀𝑘 ≥ 𝐾,∀𝑋 ∈ R𝑇

E
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By abuse of notation, let us omit the subscript 𝜄 index in the
proof since the reasoning is parameter-independent. Additionally,
we note that𝑊 (𝑘 :𝑘+�̃�−1) is the product of �̃� 𝑖 .𝑖 .𝑑 random stochastic
matrices that are asymmetric and not doubly-stochastic; Let𝑊 be
an 𝑖 .𝑖 .𝑑 copy of them.

The sketch of the proof is the following: first, we look at the
expected value and the variance of the matrix𝑊 . Then we will use
concentration inequalities to draw a result on the spectral norm of
the product𝑊 (𝑘 :𝑘+�̃�−1).

As E [𝑊 ] is a stochastic matrix, we start by computing the ex-
pected values of the random elements. We remark that (𝛼 𝑗,𝑘−𝑘 𝑗𝑖 ,𝑖 )
and (𝑅𝑖,𝑘 ), for all 𝑖, 𝑗 ∈ [𝑛], 𝑗 ̸= 𝑖, 𝑘 ≥ 𝐾 , are identically distributed as
well. Moreover, we observe that 𝑅𝑖,𝑘 ∼ Bin(𝑛 − 1, 𝐽

𝑛−1 ). Therefore,

E

[
1

1 + 𝑅𝑖,𝑘

]
=
𝑛−1∑︁
𝑘=0

1
𝑘 + 1

(
𝑛 − 1
𝑘

) (
𝐽

𝑛 − 1

)𝑘 (
1 − 𝐽

𝑛 − 1

)𝑛−1−𝑘
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= 𝑛 − 1
𝐽𝑛

𝑛−1∑︁
𝑘=0

(
𝑛

𝑘 + 1

) (
𝐽

𝑛 − 1

)𝑘+1 (
1 − 𝐽

𝑛 − 1

)𝑛−1−𝑘

= 𝑛 − 1
𝐽𝑛

(
1 −

(
1 − 𝐽

𝑛 − 1

)𝑛)
= 𝛼(1) .

Then using𝑅𝑖,𝑘 = E
[
𝑅𝑖,𝑘 |𝑅𝑖,𝑘

]
= ∑

1≤ 𝑗 ′≤𝑛,𝑗 ′ ̸=𝑖
E

[
1(𝐴 𝑗

′,𝑘−𝑘 𝑗 ′𝑖 ,𝑖 )|𝑅𝑖,𝑘
]

=

(𝑛 − 1)E
[
1(𝐴 𝑗,𝑘−𝑘 𝑗𝑖 ,𝑖 |𝑅𝑖,𝑘

]
, we deduce that E

[
𝛼 𝑗,𝑘−𝑘 𝑗𝑖 ,𝑖

]
= E

[
1

1 + 𝑅𝑖,𝑘
E

[
1(𝐴 𝑗,𝑘−𝑘 𝑗𝑖 ,𝑖 )|𝑅𝑖,𝑘

] ]
= E

[
1

1 + 𝑅𝑖,𝑘
𝑅𝑖,𝑘

𝑛 − 1

]
= 1
𝑛 − 1

(
1 − E

[
1

1 + 𝑅𝑖,𝑘

] )
= 1
𝑛 − 1

(
1 − 𝑛 − 1

𝐽𝑛

(
1 −

(
1 − 𝐽

𝑛 − 1

)𝑛))
=

1 − 𝛼(1)
𝑛 − 1 = 𝛼

Now looking at E [𝑊 ] Π𝐹 , since Π𝐹 =
(
𝛿𝑖, 𝑗𝛿𝑘𝑖 ,𝑘 𝑗 − 1

𝑇

)
𝑖,𝑘𝑖 , 𝑗,𝑘 𝑗

, we
can expand the elements of the product as:

∀𝑖, 𝑗 ∈ [𝑛],∀1 ≤ 𝑘 𝑗 ≤ 𝐾𝑗 :

(E [𝑊 ] Π𝐹 )(𝑖,𝑘𝑖 ),(𝑗,𝑘 𝑗 ) =



∑
𝑙,𝑘𝑙 𝛿𝑖,𝑙𝛿𝑘𝑖−1,𝑘𝑙𝛼(1)

(
𝛿𝑙, 𝑗𝛿𝑘𝑙 ,𝑘 𝑗 − 1

𝑇

)
= 𝛼(1)

(
𝛿𝑖, 𝑗𝛿𝑘𝑖−1,𝑘 𝑗 − 1

𝑇

)
for 2 ≤ 𝑘𝑖 ≤ 𝐾𝑖∑

𝑙,𝑘𝑙 𝛿𝑘𝑙 ,𝑘𝑙𝑖𝛼

(
𝛿𝑙, 𝑗𝛿𝑘𝑙 ,𝑘 𝑗 − 1

𝑇

)
= 𝛼

(
𝛿𝑘 𝑗𝑖 ,𝑘 𝑗 − 𝑛

𝑇

)
for 𝑘𝑖 = 1

We can now compute the Frobenius norm of this matrix:∑︁
𝑖,𝑘𝑖 , 𝑗,𝑘 𝑗

(E [𝑊 ] Π𝐹 )2(𝑖,𝑘𝑖 ),(𝑗,𝑘 𝑗 )

=
∑︁
𝑖, 𝑗

∑︁
𝑘 𝑗

𝛼2
(
𝛿𝑘 𝑗𝑖 ,𝑘 𝑗 −

𝑛

𝑇

)2
+

∑︁
𝑖,𝑘𝑖≥2

∑︁
𝑗,𝑘 𝑗

𝛼2
(1)

(
𝛿𝑖, 𝑗𝛿𝑘𝑖−1,𝑘 𝑗 −

1
𝑇

)2

=
∑︁
𝑖, 𝑗
𝛼2

((
1 − 𝑛

𝑇

)2
+ (𝐾𝑗 − 1)𝑛

2

𝑇 2

)
+

∑︁
𝑖,𝑘𝑖≥2

𝛼2
(1)

((
1 − 1

𝑇

)2
+ 𝑇 − 1

𝑇 2

)
= (𝛼𝑛)2

(
𝑇 − 𝑛
𝑇

)
+ 𝛼2

(1)

(
𝑇 − 𝑛 − 2 + 2𝑛 + 1

𝑇
− 1 + 𝑛

𝑇 2

)
≤ (𝑇 − 𝑛)

(
(𝛼𝑛)2
𝑇

+ 𝛼2
(1)

)
(4)

Using Assumption 4, we have∑
(𝑖,𝑘𝑖 ),(𝑗,𝑘 𝑗 ) (E [𝑊 ] Π𝐹 )2(𝑖,𝑘𝑖 ),(𝑗,𝑘 𝑗 ) < 1,

implying 𝜆2 = ∥E [𝑊 ] Π𝐹 ∥ < 1.We now compare ∥E [𝑊 ] Π𝐹 ∥2 and
E

[∥𝑊Π𝐹 − E [𝑊 ] Π𝐹 ∥2
]
. For𝑋 ∈ 𝐹 , on the one hand, ∥E [𝑊 ] 𝑋 ∥2

=
∑︁
𝑖∈[𝑛]

(
𝛼(1)𝑋𝑖,1 +

∑︁
𝑗 ̸=𝑖

𝛼𝑋 𝑗,𝑘 𝑗𝑖

)2

+
∑︁

1≤𝑘≤𝐾𝑖−1
𝑋 2
𝑖,𝑘

=
∑︁
𝑖∈[𝑛]

(
𝛼2

(1) + 1
)
𝑋 2
𝑖,1 +

∑︁
𝑗 ̸=𝑖

𝛼2𝑋 2
𝑗,𝑘 𝑗𝑖

+ 2
∑︁
𝑗 ̸=𝑗 ′ ̸=𝑖

𝛼2𝑋 𝑗,𝑘 𝑗𝑖𝑋 𝑗 ′,𝑘 𝑗 ′𝑖 + 2
∑︁
𝑗 ̸=𝑖

𝛼(1)𝛼𝑋𝑖,1𝑋 𝑗,𝑘 𝑗𝑖 +
∑︁

2≤𝑘≤𝐾𝑖−1
𝑋 2
𝑖,𝑘 .

On the other hand, E
[∥(𝑊 − E [𝑊 ])𝑋 ∥2]

= E

∑︁
𝑖∈[𝑛]

((
𝑊(𝑖,1),(𝑖,1) − 𝛼(1)

)
𝑋𝑖,1 +

∑︁
𝑗 ̸=𝑖

(
𝑊(𝑖,1),(𝑗,𝑘 𝑗𝑖 ) − 𝛼

)
𝑋 𝑗,𝑘 𝑗

)2
=

∑︁
𝑖∈[𝑛]

E

[(
𝑊(𝑖,1),(𝑖,1) − 𝛼(1)

)2
]
𝑋 2
𝑖,1 +

∑︁
𝑗 ̸=𝑖
E

[(
𝑊(𝑖,1),(𝑗,𝑘 𝑗𝑖 ) − 𝛼

)2
]
𝑋 2
𝑗,𝑘 𝑗𝑖

+ 2
∑︁
𝑗 ̸=𝑗 ′ ̸=𝑖

E
[(
𝑊(𝑖,1),(𝑗,𝑘 𝑗𝑖 ) − 𝛼

) (
𝑊(𝑖,1),(𝑗 ′,𝑘 𝑗 ′𝑖 ) − 𝛼

)]
𝑋 𝑗,𝑘 𝑗𝑖𝑋 𝑗 ′,𝑘 𝑗 ′𝑖

+ 2
∑︁
𝑗 ̸=𝑖
E

[(
𝑊(𝑖,1),(𝑖,1) − 𝛼(1)

) (
𝑊(𝑖,1),(𝑗,𝑘 𝑗𝑖 ) − 𝛼

)]
𝑋𝑖,1𝑋 𝑗,𝑘 𝑗𝑖 . (5)

Using linearity of the expectation, we individually bound all the
terms that appear in Eq. (5):

E

[(
𝑊(𝑖,1),(𝑖,1) − 𝛼(1)

)2
]

= E
[
𝑊 2

(𝑖,1),(𝑖,1)

]
≤ 1 (6)

E

[(
𝑊(𝑖,1),(𝑗,𝑘 𝑗𝑖 ) − 𝛼

)2
]

= E
[

𝑅𝑖(
1 + 𝑅𝑖

)2
1

𝑛 − 1

]
− 𝛼2

≤ E
[

1
1 + 𝑅𝑖

1
𝑛 − 1

]
− 𝛼2 ≤ 𝛼 (1 − 𝛼) ≤ 1 − 𝛼

𝛼
𝛼2 (7)

E
[(
𝑊(𝑖,1),(𝑗,𝑘 𝑗𝑖 ) − 𝛼

) (
𝑊(𝑖,1),(𝑗 ′,𝑘 𝑗 ′𝑖 ) − 𝛼

)]
with 𝑗 ̸= 𝑗 ′ ̸= 𝑖

= E
[
𝑊(𝑖,1),(𝑗,𝑘 𝑗𝑖 )𝑊(𝑖,1),(𝑗 ′,𝑘 𝑗 ′𝑖 )

]
− 𝛼2 (8)

Using the same line of reasoning,
(
𝑅𝑖,𝑘

)2
= E

[(
𝑅𝑖,𝑘

)2
|𝑅𝑖,𝑘

]
=

∑︁
𝑗 ̸=𝑗 ′ ̸=𝑖

E
[
1(𝐴 𝑗,𝑘−𝑘 𝑗𝑖 ,𝑖 )1(𝐴 𝑗

′,𝑘−𝑘 𝑗 ′𝑖 ,𝑖 )|𝑅𝑖,𝑘
]

+
∑︁
𝑗 ̸=𝑖
E

[
1(𝐴 𝑗,𝑘−𝑘 𝑗𝑖 ,𝑖 )2 |𝑅𝑖,𝑘

]
= (𝑛 − 1)(𝑛 − 2)E

[
1(𝐴 𝑗,𝑘−𝑘 𝑗𝑖 ,𝑖1(𝐴 𝑗

′,𝑘−𝑘 𝑗 ′𝑖 ,𝑖 )|𝑅𝑖,𝑘
]

+ 𝑛E
[
1(𝐴 𝑗,𝑘−𝑘 𝑗𝑖 ,𝑖 )|𝑅𝑖,𝑘

]
Thus, we get E

[(
𝑊(𝑖,1),(𝑗,𝑘 𝑗𝑖 ) − 𝛼

) (
𝑊(𝑖,1),(𝑗 ′,𝑘 𝑗 ′𝑖 ) − 𝛼

)]
= E

[
1

(𝑛 − 1)(𝑛 − 2)
(𝑅𝑖 )2 − 𝑅𝑖
(1 + 𝑅𝑖 )2

]
− 𝛼2

≤ 𝛼

𝑛 − 2 − 𝛼
2 ≤ 𝛼2 . (9)

As 𝛼 is an increasing function of 𝐽 , maximum value for the RHS in
Eq. (9) is 1/𝑛 for 𝐽 = 𝑛 − 1. Finally, we have:

E
[(
𝑊(𝑖,1),(𝑖,1) − 𝛼(1)

) (
𝑊(𝑖,1),(𝑗,𝑘 𝑗𝑖 ) − 𝛼

)]
= E

[
𝑅𝑖

(1 + 𝑅𝑖 )2(𝑛 − 1)

]
− 𝛼𝛼(1)

≤ 𝛼(1)(1 − 𝛼(1)
𝑛 − 1 ≤ 1 − 𝛼(1)

𝛼(1)
𝛼𝛼(1) (10)

Combining Eq. (6) to (10), we obtain the overall upper bound as:

E
[∥(𝑊 − E [𝑊 ])𝑋 ∥2] ≤ max

( 1 − 𝛼(1)
𝛼(1)

,
1 − 𝛼
𝛼

)
∥E [𝑊 ] 𝑋 ∥2
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Moreover, using the fact that 𝛼 ≤ 𝛼(1) and that 𝑥 ↦→ 1−𝑥
𝑥 is decreas-

ing, we have E
[∥𝑊Π𝐹 − E [𝑊Π𝐹 ] ∥2

] ≤ 1−𝛼
𝛼 ∥E [𝑊Π𝐹 ] ∥2. Hence,

applying Corr. 5.4. from [25], we get that for all �̃� ∈ N , 𝑘 ≥ 𝐾 :

E
[(𝑊 𝑘+�̃�−1

𝜄 Π𝐹
)
. . .

(
𝑊 𝑘
𝜄 Π𝐹

)]
≤ exp

{√︁
�̃�

√︂
2 log(𝑇 ) 1 − 𝛼

𝛼
+ �̃� log(𝜆2)

}
.

Let 0 < 𝜌 < 1. Then for

𝑘𝜌 ≥
©«
√︃

2 log(𝑇 ) 1−𝛼
𝛼 +

√︃
2 log(𝑇 ) 1−𝛼

𝛼 + 8 log(𝜆2) log(1 − 𝜌)
2|log(𝜆2) |

ª®®¬
2

,

for every 𝑘 ≥ 𝐾 and 𝑋 ∈ R𝑇 , we finally have:

E

[(𝑊 𝑘+�̃�−1
𝜄 Π𝐹

)
. . .

(
𝑊 𝑘
𝜄 Π𝐹

) (
𝑋 − 𝑋

)2]
≤ E

[(𝑊 𝑘+�̃�−1
𝜄 Π𝐹

)
. . .

(
𝑊 𝑘
𝜄 Π𝐹

)]2 𝑋 − 𝑋2

≤ (1 − 𝜌)2
𝑋 − 𝑋2

, concluding the proof of Lem. 2.

Now we proceed to prove the theoretical convergence guarantees
of DivShare.
Proof of Theorem 1. Using Lem. 2 and under Assumptions 1 to 4,
we apply Theorem 4.2 from [17] and have:

E

[
1
�̃�

∑︁
𝑘<�̃�

∇𝐹 (
𝑋𝑘

)2
]

= O
©«
𝐿∆

(
1√
𝑛

+ 𝑒𝑘𝜌
(𝑒−1)𝜌

)
�̃�𝑛

+
(
𝐿∆

(
𝜎2 + 𝜁 2)
�̃�

) 1
2

+
©«
𝑛𝐿∆

√︂
𝜎2 𝑒𝑘𝜌

(𝑒−1)𝜌 + 𝜁 2
(
𝑒𝑘𝜌

(𝑒−1)𝜌

)2

�̃�

ª®®®®¬
2
3 ª®®®®®¬
.

In order to get the best bound, we reduce to the following opti-
mization problem:

min
0 <𝜌<1

𝑒𝑘𝜌

(𝑒 − 1)𝜌

= 𝑒

𝑒 − 1
1
𝜌

©«
√︃

2 log(𝑇 ) 1−𝛼
𝛼 +

√︃
2 log(𝑇 ) 1−𝛼

𝛼 + 8 log(𝜆2) log(1 − 𝜌)
2|log(𝜆2)|

ª®®¬
2

We have:
𝜙(𝜌)

= 𝑒

𝑒 − 1
1
𝜌

©«
√︃

2 log(𝑇 ) 1−𝛼
𝛼 +

√︃
2 log(𝑇 ) 1−𝛼

𝛼 + 8 log(𝜆2) log(1 − 𝜌)
2|log(𝜆2)|

ª®®¬
2

≤ 𝑒

2(𝑒 − 1)|log(𝜆2)|2
1
𝜌

(
2 log(𝑇 ) 1 − 𝛼

𝛼
+ 2 log(𝑇 ) 1 − 𝛼

𝛼

+ 8 log(𝜆2) log(1 − 𝜌)
)2

≤ 2𝑒 log(𝑇 )(1 − 𝛼)
(𝑒 − 1)𝛼 |log(𝜆2)|2

(
1
𝜌

+
2𝛼 log(𝜆2)

log(𝑇 )(1 − 𝛼)
log(1 − 𝜌)

𝜌

)
The function 𝜌 ↦→ 1

𝜌 − 𝑎
log(1−𝜌 )

𝜌 with 𝑎 > 0 has a minimum on 𝜌
such as 𝜌

1−𝜌 + log(1 − 𝜌) = 1
𝑎 .

Choosing to evaluate in 𝜌 = 1
1+𝑎 with 𝑎 = 2𝛼 |log(𝜆2 ) |

log(𝑇 )(1−𝛼 ) and using

log
(
1 + 1

𝑎

)
≤ 1
𝑎 :

min
0 <𝜌<1

𝜙(𝜌) ≤ 4𝑒
(𝑒 − 1)|log(𝜆2)|𝑎 (1 + 2𝑎) ≤ 4𝑒

(𝑒 − 1)|log(𝜆2)|

(
1
𝑎

+ 2
)

≤ 8𝑒
(𝑒 − 1)

2𝛼 |log(𝜆2)| + (1 − 𝛼) log(𝑇 )
2𝛼 |log(𝜆2)|2

≤ 8𝑒
(𝑒 − 1)

𝛼 |log(𝜆2)| + (1 − 𝛼) log(𝑇 )
𝛼 |log(𝜆2)|2

which concludes the proof. □

G Discussion on Assumption 4

Assumption 4 establishes a link between the effects of straggling
and the communication rate in the network. In this section, we
analyze the asymptotic properties of this assumption to confirm
that DivShare under Assumption 4 is adaptable to a wide range of
real-world scenarios. Assumption 4 can be rewritten as:

𝑇 ≤ 𝑇 where

𝑇 = 1
2𝛼2

(1)

(
𝑛𝛼2

(1) + 1 − (𝑛𝛼)2 +
√︂(

𝑛𝛼2
(1) + 1 − (𝑛𝛼)2

)2
+ 4𝛼2𝛼2

(1)𝑛
3

)
.

Full communication. For 𝐽 = 𝑛 − 1, we get:

𝑇 − 𝑛 = 𝑛
3
2

√︂
1 + 1

4𝑛 −
𝑛

2
Thus the maximum average straggling per node goes to infinity as
the system scales as:

𝑇 − 𝑛
𝑛

=
√
𝑛 − 1

2 + 1
2
√
𝑛

+𝑂
(

1
𝑛
√
𝑛

)
Partial communication. For 𝐽 = log(𝑛), a parameter chosen in
other works on random topology [8, 12] and in our experimental
setup, we get: 𝑇 − 𝑛 ∼ log(𝑛)2. In other words, depending on the
communication rate chosen, if 𝑇 − 𝑛 = 𝑜

(
𝑇 − 𝑛

)
, the coefficients

of the numerators of the second and third terms in Th. 1 go to 0 as
the system scales, enabling speed-ups and better convergence.
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