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Abstract
Among the many technical challenges to enforc-
ing AI regulations, one crucial yet underexplored
problem is the risk of audit manipulation. This
manipulation occurs when a platform deliberately
alters its answers to a regulator to pass an au-
dit without modifying its answers to other users.
In this paper, we introduce a novel approach to
manipulation-proof auditing by taking into ac-
count the auditor’s prior knowledge of the task
solved by the platform. We first demonstrate that
regulators must not rely on public priors (e.g., a
public dataset), as platforms could easily fool the
auditor in such cases. We then formally establish
the conditions under which an auditor can pre-
vent audit manipulations using prior knowledge
about the ground truth. Finally, our experiments
with two standard datasets illustrate the maximum
level of unfairness a platform can hide before
being detected as malicious. Our formalization
and generalization of manipulation-proof auditing
with a prior opens up new research directions for
more robust fairness audits.

1. Introduction
Machine learning (ML) models are becoming central to nu-
merous businesses, industrial processes, and administrations.
Such models are being employed in high-stakes domains
where ML-driven decisions can have profound impacts on
individuals and communities (Rudin, 2019).

For instance, financial institutions have been leveraging
ML-driven systems to evaluate loan applications based on
attributes like income, credit score, and employment history
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(West, 2000). Given the far-reaching consequences of these
applications, ensuring the fairness (Mehrabi et al., 2021)
and regulatory compliance (Petersen et al., 2022) of such
models is paramount.

Independent fairness audits serve as a critical tool for as-
sessing the fairness of ML models and ensure that model
providers remain accountable to the public (Birhane et al.,
2024; Raji, 2024; Raji et al., 2022). As models are placed in
production, auditors rely on black-box interactions, where
queries are sent to the model, and the responses are analyzed
to identify potential fairness violations (e.g., see (Kim et al.,
2019)). However, this reliance on black-box audits leaves
the process vulnerable to manipulations by the platform,
also known as fairwashing. Regulatory practices currently
require auditors to notify platforms in advance of an au-
dit. Platforms can thus strategically alter the model or its
responses during the audit to create the appearance of fair-
ness, effectively concealing underlying biases and unfair
practices from the auditor while maintaining operational ef-
ficiency for its users. Consider, for example, a social media
platform that employs an ML model to moderate content,
automatically removing posts deemed harmful or mislead-
ing. During a fairness audit, the platform could deploy a
more lenient moderation model that appears unbiased, only
to revert to a stricter, potentially biased version once the
audit concludes, effectively concealing unfair treatment of
certain user groups.

In fact, such discrepancies between a platform’s behavior
during audits and its real-world operations have been ob-
served. Initially created as part of the Social Science One
project, a data sharing program by Meta encountered a ma-
jor setback when consistency issues were discovered in
the data provided to scientists (Timberg, 2021). Similarly,
a collaboration between Meta and independent scientists,
studying the polarization effects of Facebook’s recommen-
dation algorithm, recently faced criticism over discrepancies
found between the algorithm’s behavior before and during
the audit (Ribeiro, 2024). Academic studies show that fair-
ness audits are easily manipulatable, whether the platform
is required to prove its fairness through the release of a
public dataset (Fukuchi et al., 2020), through the explana-
tion of decisions (Aı̈vodji et al., 2021; Shamsabadi et al.,
2022; Le Merrer & Trédan, 2020; Aı̈vodji et al., 2019), or
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through black-box query interactions (Yan & Zhang, 2022;
Garcia Bourrée et al., 2023; Godinot et al., 2024). The
potential for manipulation underscores the need for more
robust auditing strategies.

This work presents a novel theoretical framework and a
practical implementation for preventing manipulations by
the platform. Our analysis starts from a simple observa-
tion: auditors can readily collect labeled data, reflecting the
platform’s service from independent sources – a common
practice whose theoretical and empirical implications re-
main unexplored. For example, in the moderation example
discussed earlier, the auditor could have some undeniable
evidence at hand, to confront the model under scrutiny,
e.g., “A post with this content must pass the moderation
filter, otherwise there is some bias on a protected feature of
the user profile”. Thus, by incorporating this dataset, the
auditor can independently verify the platform’s responses,
cross-referencing them against known ground truth labels.
By combining black-box interactions with prior knowledge
from the labeled dataset, our method enables more reliable
detection of fairness violations while reducing the reliance
on assumptions about the platform’s behavior. Specifically,
we aim to answer the following research question: Can
the auditor’s prior knowledge of the ground truth prevent
fairwashing in fairness audits?

Our paper makes the following three contributions:

• We introduce and analyze a new fairness auditing ap-
proach for black-box interactions where the auditor has
access to prior knowledge about the platform and the
ML task (Section 3).

• We theoretically analyze how much unfairness a plat-
form can conceal given the auditor’s prior knowledge.
For any auditor priors, our results highlight the impor-
tance of keeping the auditor’s prior knowledge private
(Section 3). For the dataset prior we introduce, we
establish bounds on the concealable unfairness when
the auditor prior remains confidential (Section 4).

• By simulating fairness audits on multiple tabular and
vision datasets, we provide a more nuanced understand-
ing of how our framework should be implemented. Our
experiments offer insights into setting the detection
threshold used to identify manipulations (Section 5).

2. Background: Auditing ML Models
This work studies fairness audits of ML decision-making
systems under manipulation by the model-hosting platform.
We first formalize the decision-making system and then
introduce the dynamics of fairness auditing.

ML decision-making systems From feature transforms
to specific business rules, modern ML decision-making
systems can be remarkably complex. We abstract all this
complexity by modeling the entire system as a function
h : X → Y (e.g., h can be a ML model). The set of pos-
sible queries X is called the input space, and the set of
possible answers is called the output space. We consider
binary classification problems, which is in line with related
work in the domain of ML fairness analysis (Yan & Zhang,
2022; Godinot et al., 2024). Each query is associated with
a protected attribute a ∈ A, which the platform is legally
required not to discriminate against. Examples of such at-
tributes include gender, age, or race and are typically defined
by law. The platform has access to the protected attribute
a either as a feature of the input space X or by a proxy
(e.g., looking at the name of the person to determine the
gender). We define D as the data distribution on X × A.
For any subset S ⊂ X × A and protected feature value
a ∈ A, we will write Sa = {x | (x, a′) ∈ S, a′ = a} and
h(S) = {h(x) | (x, a) ∈ S}. Throughout the paper, when
it is clear from the context we will abuse the S notation: S
will either be a subset of X , X ×A or X ×A× Y .

This work analyses how the platform can manipulate its
model to pass a fairness audit, we now define relevant no-
tation for this. The space of models that the platform can
implement is called the hypothesis space H. The loss func-
tion L : H × (X × Y) → R measures the discrepancy
between predictions and ground truth values. For a given
hypothesis h ∈ H, its expected loss over the distribution D
is L(h,D) = E(x,a)∼D [ℓ(h(x), x, a)] with ℓ is a loss func-
tion that quantifies the error of h(x) given a single input x
and its protected attribute a.

ML auditing An ML audit is ”any independent assess-
ment of an identified audit target via an evaluation of artic-
ulated expectations with the implicit or explicit objective
of accountability” (Birhane et al., 2024). A ML audit in-
volves three entities. The platform is the entity hosting the
ML decision-making system. The users are those using the
service hosted by the platform. The auditor is the entity
conducting the audit to verify whether the ML model is com-
pliant for all users. The auditor could be a state regulator, a
consulting firm, or even a group of users.

Fairness metric In this work, we consider ML audits
targeting the fairness of the studied system. Specifically,
the auditor chooses a fairness metric and sends queries to
the platform to determine whether the platform abides by
their fairness criterion. Among all the (un-)fairness metrics,
we study Demographic Parity (DP) (Calders et al., 2009),
which is commonly used in the fairness evaluation literature
thanks to its simplicity. DP is defined as follows:
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Figure 1. The auditing process as conducted by an auditor, which
proceeds in three steps. The platform exposes a model hp to the
users. To appear fair to the auditor while not deteriorating the
utility for its users, the platform manipulates its answers on the
audit set S.

µ(h) =
P(X,A)∼D (h(X) = 1|A = 1)

− P(X,A)∼D (h(X) = 1|A = 0)
(1)

For a platform, DP is the easiest metric to manipulate (Yan
& Zhang, 2022; Ajarra et al., 2024) as it only depends
on the outcome of the ML model and not on its perfor-
mance on the different protected groups. Thus, a platform
can artificially adjust outputs, e.g., providing more posi-
tive outcomes for an underrepresented group. To decide
whether a platform passes the audit or not, the auditor
builds an audit set S ⊂ X × A and evaluates the plug-
in DP estimator: µ̂(h, S) = 1

|S1|
∑

x∈S1
1 {h(x) = 1} −

1
|S0|

∑
x∈S0

1 {h(x) = 1}. Based on µ(h), we also define
the set of fair models F =

{
h ∈ YX : µ(h) = 0

}
.

3. Enhancing Black-box Auditing with a Prior
Since a malicious platform can manipulate the DP metric
with relative ease, the auditor has to find ways to prevent
these manipulations (e.g., using a different metric) or to
detect them. In this section, we explore the latter. To detect
manipulations, the auditor must use prior knowledge about
what constitutes a ”likely set of answers” on its audit dataset
S. Then, using this prior, they would be able to estimate the
likelihood that the received set of answers hm(S) has been
manipulated.

3.1. Modeling the Auditor Prior

Previous work has demonstrated that prior knowledge is
both a practical and an essential tool for auditing, yet the
notion of an auditor prior has not been explicitly leveraged

in the analysis of fairness audits. We define an auditor prior
as follows.
Definition 3.1 (Auditor prior). The auditor prior is a set
of models Ha ⊂ YX that the auditor can reasonably expect
to observe given her knowledge of the decision task by the
platform.

For example, in (Tan et al., 2018), the authors study fea-
ture importance by training two models — one on a public
dataset and another via distillation of the audited ML model
— and comparing the resulting models. Using a more theo-
retical approach, Yan & Zhang and Godinot et al. explored
the case of an auditor knowing the hypothesis class of the
platform, i.e., Ha = H. Ajarra et al. proposed to use an
assumption about the Boolean Fourier coefficients of H to
construct Ha. Finally, Garcia Bourrée et al. and Shamsabadi
et al. used side-channel access (e.g., an additional API or
explanations) to the ML model to define Ha and derive guar-
antees on the measured fairness. In Section 4, we introduce
a labeled dataset Da that the auditor will leverage to define
Ha. Definition 3.1 captures all of the situations above and
allows to formulate general results about the problem of
robust auditing.

The auditing process The auditing process consists of
three steps which we visualize in Figure 1. Here, hp refers
to the model that the platform exposes to its users (the top
part of Figure 1) and hm refers to the model exposed to
the auditor (bottom part of Figure 1). First, the auditor
builds an audit set S ⊂ X and sends the queries in S to
the platform (step 1 ). The platform receives S all at once
and computes the answers using its model hp. To appear
fair if it is not, the platform projects its labels hp(S) on the
set F of fair models. This defines a manipulated model hm

and the answers hm(S) the platform will send to the auditor
(step 2 ). The auditor receives hm(S) and exploits these
samples to evaluate whether the platform is fair (hm ∈ F)
and honest (hp = hm), (step 3 ). Since the auditor does
not have direct access to hp, they compare hm to their prior
Ha to decide whether the platform is honest or malicious.
Thus, the auditor tests the two following properties of hm:

Is the platform fair? hm

?
∈ F (2)

Is the platform honest? hm

?
∈ Ha (3)

For dataset priors (i.e., when Ha is a ball, see Section 4), we
draw F and Ha in Figure 2. Given a model hm, the fairness
audit is equivalent to checking if hm belongs to the blue
shaded area. In the example of Figure 2, the platform would
be flagged as malicious as hm belongs to F but not to Ha.

Online v.s. batch auditing Note that we assume that the
platform receives all audit queries at once and that it is pos-
sible to detect all the audit queries. In practice, the queries
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are usually issued online (that is, one-by-one) by the audi-
tor, through web-scraping or through an API. Compared to
online auditing, it is easier for the platform to manipulate
an audit if it knows all the audit queries before having to
answer. On the other hand, because the auditor has to send
all their queries at once, they cannot use the answers of the
platform to actively guide the generation of the audit ques-
tions (e.g., as in (Yan & Zhang, 2022; Godinot et al., 2024)).
Ultimately, our setting is built as a worst-case analysis of
the auditing game for the auditor.

Auditing axioms To avoid trivial audits, we add two mod-
eling assumptions. The first assumption ensures that the
auditors’ prior is correct so that a honest platform does not
appear as lying. The second assumption asserts that an audit
is necessary, otherwise the auditor could directly conclude
from his prior that the platform is unfair. That is to say, the
auditor should never flag a honest platform malicious. In
particular, the auditor must have a prior that is close to the
ground truth. Those assumptions are expressed as:

hp ∈ Ha and Ha ∩ F ̸= ∅. (4)

3.2. On Public Auditor Priors

A typical auditor proceeds in the following way. Upon
examining a platform’s model hm, the auditor must first
understand the task addressed by hm and what constitutes a
”good-performing model” on this task. In our moderation
example, the auditor might try to look for public moderation
datasets to test the performance of hm using a few examples.
It might also look for publicly-available moderation models
to compare their resulting input/output pairs with those of
hm. Unfortunately, our first remark is that regardless of the
prior the auditor might construct, if these models are public
(or at least known by the platform), the platform will always
be able to manipulate the audit:

Theorem 3.2. Assume the platform knows Ha, it can then
always pick hm ∈ {Ha∩F} to appear both fair and honest.

Proof. First, recall that by definition the platform knows F .
Assume that the dataset prior is public, the platform also
knows Ha. Hence the platform can compute F ∩ Ha. As
by assumption, F ∩ Ha ̸= ∅ (Equation (4)), the platform
can pick any model hm ∈ F ∩Ha.

In the case of (Shamsabadi et al., 2022), the platform per-
fectly knows Ha (because the Ha is coming from queries
of its model) so the detector is subject to this manipulation
(called Irreducibility in the paper). In Yan & Zhang’s work,
Ha is the hypothesis class H of the platform, communicated
to the auditor before the audit. Theorem 3.2 provides a novel
view on the impossibility results that were later proved in
(Godinot et al., 2024).

4. Using Labeled Datasets for More Robust
Audits Against Manipulations

In an ideal, yet unrealistic audit scenario, the auditor would
have access to non-manipulated answers from the original
platform model hp. The prior Ha would then be the set of
models that agree with these non-manipulated answers and
would allow the auditor to detect inconsistencies between
the original hp and manipulated hm models. Yet in general,
the auditor does not have access to such non-manipulated
answers.

As an alternative, we propose to study the use of a private
(because of Theorem 3.2) dataset Da, collected by the au-
ditor to construct the auditor prior Ha. This idea (coupled
with an assumption on the hypothesis class) has been studied
experimentally (Tan et al., 2018) but the more recent theoret-
ical works on robust auditing diverged towards studying pri-
ors on the model itself rather than on the data (Shamsabadi
et al., 2022; Yan & Zhang, 2022; Ajarra et al., 2024). In the
following, we define what a dataset prior is, and study the
guarantees an auditor can achieve using this prior. Unless
noted otherwise, in this section and in Section 5, Ha will
denote the dataset prior.
Definition 4.1 (Dataset prior). Let Da = (Xa, Aa, Ya) ∈
Xn ×An × Yn be a labeled dataset the auditor has access
to. The dataset prior Ha is defined as the set of models that
have a reasonable risk on Da.

Ha =
{
h ∈ YX : L(h,Da) < τ

}
. (5)

To test if the platform is honest, the auditor needs to verify
whether hm ∈ Ha, i.e., whether L(hm, Da) < τ . The risk
threshold τ thus plays a big role in the guarantees the audi-
tor will be able to achieve. We discuss the impact of τ in
Section 4.2 and guidelines to set its value in Section 4.3, but
first, we need to discuss the definition of optimal manipula-
tion in Section 4.1.

4.1. Optimal Manipulation

Given the audit set S and its model hp, the objective of a
manipulative platform is to create a set of answers hm(S)
that appear fair to the auditor but also do not raise suspicions.
Ideally, the platform would like to know the auditor prior Ha

(see Theorem 3.2), but in the general case it cannot because
it is not public information. As a consequence, the platform
cannot directly optimize its answers to be expectable and
fair. However, it still has cards up its sleeve; it already
trained a model hp on a dataset D that is close to that of the
auditor Da.

Thus, instead of searching hm in Ha ∩ F , the platform
can assume that its true model hp is expectable – that is,
hp ∈ Ha – and try to find a fair model hm ∈ F while
flipping as few labels as possible from hp. Therefore, the
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d

Figure 2. Representation of the auditor prior Ha, the honest plat-
form model hp and a corresponding malicious model hm on the
fair F plane. The red area represents the area where platforms
optimal manipulations are detected as dishonest: they fall outside
of the blue region of F

optimal manipulation is the projection of hp on F :

h∗
m = projF (hp) = argmin

h∈F
d(h, hp). (6)

The distance d in Equation (6) is the value of risk L of h
using the labels of hp as the ground truth. This scenario
captures the fairwashing approach in (Aı̈vodji et al., 2021)
in the context of explanation manipulations.

4.2. Achievable Guarantees

Following the second auditing axiom formulated in Equa-
tion (4), the original model of the platform is always ex-
pectable, i.e., hp ∈ Ha. Thus, the manipulation detection
test has no false positives, and the main quantity of interest
to the auditor is the manipulation detection rate.
Definition 4.2 (Detection rate). The probability Puf that
the auditor correctly detects a manipulative platform with
optimal manipulation is Puf = P (h∗

m /∈ Ha|hp ∈ Ha).

Estimating or computing Puf requires the knowledge of
the distribution of models in Ha. Unfortunately, unless
they have access to the training pipeline of the platform,
this model distribution is inaccessible to the auditor. To
overcome this issue, we make the assumption of an unin-
formative prior: since the auditor does not know the model
distribution in Ha, they must assume it is uniform.
Theorem 4.3 (Prior-Uniform detection rate). Under the
dataset prior of Definition 4.1 with L defined as the ℓ2 norm,
and the uninformative prior assumption, the probability that
the auditor correctly detects a malicious platform trying to
be fair is

1− 1

Wn

(∫ arccos(δ/τ)

0

sinn(θ)dθ − δ

τ

(
1− δ2

τ2

)(n−1)/2
)
.

with δ = d(ha,F), the distance of ha to F and Wn is the
n-term of Wallis’ integrals.

To gain intuition about the proof, we represent the audit
case for |S| = 3 in Figure 2. By definition of the dataset
prior, Ha is a ball of radius τ , centered on Ya, the labels
given in the audit dataset Da. The manipulation of a model
hp can be detected only if the resulting model is outside
of Ha, as shown in orange on Figure 2. The probability of
detection is thus 1 minus the volume of original models hp

whose projection on F lies outside on Ha. This volume
is highlighted in red in Figure 2. The detailed proof of
Theorem 4.3 is deferred to Appendix A.

Theorem 4.3 highlights two key parameters to the auditor’s
success: the unfairness of the prior δ = d(ha,F) and the
expectability threshold τ . If the dataset prior is perfectly
fair (i.e., δ = 0), then the auditor has no chance to detect
a manipulated model as non-expectable (Puf = 0, Corol-
lary A.5). On the other hand, Corollary A.4 proves that, if
τ = δ 1 then Puf = 1. Finally, in Corollary 4.4, we derive
a lower bound on Puf for the case 0 < δ < τ . We provide
the proof of Corollary 4.4 in Appendix A.

Corollary 4.4 (Detection rate lower bound). If n is even,

1

Wn

δ

τ

(
1− δ2

τ2

)(n−1)/2

≤ Puf ≤ 1.

4.3. Practical Considerations and Discussion

In practice, τ is determined by the task difficulty, and the
amount of data available to solve the task. One possibility
to tune the value of τ is to use the error rate of current state-
of-the-art models that solve the task at hand as a minimum
value. We empirically explore this option in Section 5.4.
An alternative, if the auditor has the resources, would be to
train a set of models on the task and use them to calibrate τ .
We leave further exploration of the calibration of τ to future
work.

On the other hand, the value of δ is determined by the audit
set sampling procedure. In most cases, the audit set is sam-
pled independently from a pre-specified audit distribution.
In this case, the value of δ is fully determined. To regain
some control over δ, the auditor has to allow other audit set
sampling strategies, at the expense of potential statistical
bias in the fairness and accuracy estimations.

Takeaway. The auditor can always calculate a priori the
probability to correctly detect a malicious platform trying
to be fair. This probability depends on the ratio between un-
fairness δ of the auditor prior and the chosen risk threshold
τ , and depends on the audit budget n = |S|.

1Per our first axiom in Equation (4), we have that δ ≤ τ .
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Figure 3. The concealable unfairness by the platform for different detection scores and manipulation strategies. We highlight this for two
features of the CelebA dataset (left) and for two different ML models trained on the ACSEmployment dataset (right). The horizontal red
line indicates the DP of the most unfair model without manipulation.

5. Empirical Evaluation
We now empirically quantify the extent to which the plat-
form can manipulate the unfairness of its ML model. To that
end, we study the concealable unfairness: the maximum
level of unfairness a platform can hope to hide before being
detected as malicious. First, we evaluate the effectiveness
of different manipulation strategies and determine the opti-
mal one. Since any practical fairness repair method can be
used as a manipulation methods, we ask (RQ1) What is the
best manipulation strategy implementation (Section 5.3)?
Then, we study the dynamics of the concealable unfairness
when the audit budget |S| increases: (RQ2) Can the auditor
always find an audit budget that prevents the platform from
hiding any unfairness, i.e., that always allows to flag the
platform if malicious (Section 5.4)?

5.1. Experimental Setup

We conduct our experiments on tabular and vision modali-
ties. The tabular dataset comes from the ACSEmployment
task for the state of Minnesota in 2018, which is derived
from US Census data and provided in folktables (Ding et al.,
2021). The objective of this task is to predict whether an
individual between the age of 16 and 90 is employed or
not. As input features of the model hp, we consider sev-
eral attributes of the individual, including gender, race, and
age. The fairness of the models is evaluated along the race
attribute given in the dataset: one group consists of individ-
uals identified as “white alone”, while the other includes all
remaining individuals.

For the vision modality, we study CelebA (Liu et al., 2015),
which consists of images of celebrities along with several bi-
nary attributes associated with each image, such as whether
the person in the photo is blond, smiling, or if the photo

is blurry. As input to a vision model, we use the image to
predict one of the associated attributes. The target attribute
varies across experiments and will be specified accordingly.
Demographic Parity is evaluated along the gender attribute
given in the dataset. For the ACSEmployment dataset, we
train Gradient Boosted Decision Tree (GBDT) and Logistic
Regression (Log. Reg.) models, while for CelebA, we train
a LeNet convolutional neural network (Lecun et al., 1998).
GBDT and Log. Reg. are trained using the default parame-
ters of their respective implementations in SCIKIT-LEARN.
Meanwhile, LeNet is trained irrespective of the target at-
tribute using the Adam optimizer with a learning rate of
γ = 0.001, a batch size of 32, and for two epochs, which
is sufficient for the model to converge on all features. The
code to run the experiments is available online.2

5.2. Implementing Optimal Audit Manipulations

In practice, computing the optimal manipulation hm =
projF (hp) amounts to solving:

hm(S) ∈ argmin L(h, {(x, hp(x)) : x ∈ S})
s.t. µ̂(h, S) < τ

(7)

We note that this problem is the same problem solved by
in-processing and post-processing fairness repair methods
(Caton & Haas, 2024). Thus, ironically, computing the op-
timal manipulation is equivalent to choosing the optimal
fairness repair method. The only difference being on which
set the fairness constraints and accuracy objectives are de-
fined: the audit set S instead of the training dataset. Thus,
since any practical fairness repair method can be repurposed
for manipulation, we adapted four classical fairness repair
methods: ROC Mitigation (ROC) (Kamiran et al., 2012),

2See https://github.com/grodino/merlin.
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Figure 4. The concealable unfairness for different audit budgets (i.e., data samples from the labeled dataset). We highlight this for two
features of the CelebA dataset (left) and for two different ML models trained on the ACSEmployment dataset (right).

Optimal Label Transport (OT-L) (Jiang et al., 2019), Linear
Relaxation (LinR) (Lohaus et al., 2020) and Threshold Ma-
nipulation (ThreshOpt) (Hardt et al., 2016).

5.3. Quantifying the Concealable Unfairness For
Different Detection Scores

We next quantify the amount of fairness that a platform can
hide for the different manipulation strategies above. This
concealable unfairness ∆µ(hp, hm) is defined as the De-
mographic Parity gap between the manipulated and honest
models.

∆µ(hp, hm) = |µ̂(hm, S)− µ̂(hp, S)| (8)

To decide whether the model observed during the audit is
manipulated, the auditor has to decide whether hm ∈ Ha or
not. To do so, the auditor estimates L(h,Da) by computing
the detection score Detect(hm, S).

Detect(hm, S) =
∑

(x,y)∈S

1 {hm(x) ̸= y} (9)

To build (hp, hm) model pairs, we consider manipulation
methods among ROC, OT-L, LinR and ThreshOpt, varying
hyperparameter values when applicable. In Figure 3, we
plot the value of the concealable unfairness ∆µ(hp, hm)
against the detection score Detect(hm, S) computed by the
auditor. We show the results of LeNet models trained on
two CelebA targets (first and second subplots), and GBDT
and Log. Reg. models trained on ACSEmployment (third
and fourth subplots). The horizontal red lines indicates the
DP of the most unfair model without manipulation.

First, we observe that for all the datasets, the platform can
conceal significant amounts of unfairness: from 10 to 20

points differences between the two protected groups. Com-
paring the concealable unfairness values with the DP of the
most unfair honest model (red horizontal line), we observe
that the manipulation strategies almost all able to totally
conceal the original model unfairness. Then, focusing on
the x axis, the difference in Detect(hm, S) between the
different honest models highlights the impact the perfor-
mance of the platform’s model should have on the detection
threshold τ . In fact, depending on the dataset and on the
model, Detect(honest, S) varies from ∼ 0.1 to ∼ 0.2. In
Section 5.4, we explore a solution to setup the threshold.

5.4. Dynamics of the Concealable Unfairness as The
Audit Budget Increases

The probability of detecting manipulations (via the the de-
tection score) should intuitively increase as the auditor gains
access to a larger number of data samples (i.e., has a higher
audit budget) since this allows for a more accurate com-
parison of hm with the data prior Ha. In this experiment,
we explore how well this intuition holds in practice. For
this purpose, we fix the hyperparameters for each manipu-
lation method by selecting those that result in the highest
concealable unfairness for a given base model, as discussed
in Section 5.3. Then, for each base model–target attribute
pair, we determine the maximum concealable unfairness
that a platform can achieve while ensuring that its detection
score (see eq. 9) remains below the detection threshold. As
proposed in Section 4 the threshold for each model is set to
1− x, where x represents the maximum accuracy achieved
when training a set of models on the corresponding target.
This process is repeated for audit budgets ranging from 100
to 5, 000.

The results of this experiment are shown in Figure 4. The
two plots on the left display the results for CelebA using
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the same base model but different target attributes, while
the two plots on the right show results for ACSEmployment
using the same target attribute but different base models.
These results reveal two distinct cases. In the first case
(CelebA Smiling in Figure 4), the concealable unfairness
converges to zero as the audit budget increases. This is due
to the low aleatoric uncertainty associated to the Smiling
target. Since the task is easier, the accuracy range of models
trained on Smiling is narrower, leading to a tighter de-
tection threshold τ . In the second case (all the other facets
of Figure 4), the concealable unfairness remains nonzero
despite an increasing budget.

Furthermore, in many cases, even with a high audit budget,
some increase of unfairness remains undetectable by the
auditor. Consequently, the platform retains some capacity to
conceal unfairness even at high audit budgets. This stresses
the hardness of the auditor’s task in some configurations,
and lead to a negative answer to (RQ2). In that light, we also
observe that –in response to (RQ1)–, the Linear Relaxation
and ROC Mitigation manipulation strategies are the most
effective for a manipulative platform.

6. Related Work
Fairwashing and rationalization Addressing fairness is-
sues often requires compromising model performance for
advantaged groups which can discourage companies from
embracing fair training practices (Zietlow et al., 2022; Zhao
& Gordon, 2022). Companies have two incentives to pay
attention to the impact of their system on society. The
first incentive comes from regulatory efforts such as the
Algorithmic Accountability Act (AAA) (Congress, 2022)
(US) and the Digital Markets Act (DMA) (Union, 2022)
(EU) that impose fairness, transparency, and accountability
constraints on large digital platforms. Yet, how to enforce
these regulations is still an open problem (Crémer et al.,
2023). The second incentive is public image. Since fairness,
transparency and accountability are laudable goal, audits,
investigative journalism and certifications (Costanza-Chock
et al., 2022) should force companies to pay attention to
these objectives. However, both incentives are external:
the platform just has to appear fair, transparent and ac-
countable. This rationalization risk has been studied in the
context of explanations fairwashing (Aı̈vodji et al., 2019;
2021; Shamsabadi et al., 2022).

Fairness auditing Fairness auditing evaluates ML mod-
els to ensure fairness and accountability, often without ac-
cess to proprietary model internals (Ng, 2021). This black-
box auditing approach relies on querying the model and
analyzing its outputs against pre-defined fairness metrics
(Birhane et al., 2024; de Vos et al., 2024). Current attempts
to enhance fairness audits with tangible guarantees draw

inspiration from hypothesis testing (Si et al., 2021; Taske-
sen et al., 2021; DiCiccio et al., 2020; Cen & Alur, 2024;
Cherian & Candès, 2024; Bénesse et al., 2024), online fair-
ness auditing (Chugg et al., 2023; Maneriker et al., 2023),
and formal methods for fairness certification (Albarghouthi
et al., 2017; Ghosh et al., 2021; 2022; Borca-Tasciuc et al.,
2022). Beyond statistical methods, the work of Yadav et
al. explore the role of explanations in the auditing pro-
cess (Yadav et al., 2022). Recent works also stress the
importance of broadening the lens of algorithm auditing by
incorporating user perspectives and sociotechnical factors
(Lam et al., 2023; Deng et al., 2023). On another line of
research, Confidential-PROFITT and FairProof propose to
integrate cryptographic techniques in cooperation with the
platforms, to ensure the faithfulness of platform responses
during audits (Yadav et al., 2024; Shamsabadi et al., 2023;
Waiwitlikhit et al., 2024); this is, however, more intrusive
and technically restrictive, and thus awaits for adoption.

Manipulating audits Manipulating fairness audits is an
active area of research. Auditors can be fooled by biased
sampling when the decision maker is allowed to publish a
labeled dataset as proof of model fairness (Fukuchi et al.,
2020). Adversarial attacks on explanation methods, such as
LIME and SHAP, can be employed to produce misleading
interpretations of model behavior (Fokkema et al., 2023;
Shamsabadi et al., 2022; Laberge et al., 2023; Slack et al.,
2020; Anders et al., 2020; Aı̈vodji et al., 2019; Le Merrer &
Trédan, 2020). Platforms can also modify the output of their
models to create the appearance of fairness without address-
ing underlying biases (Yan & Zhang, 2022; Garcia Bourrée
et al., 2023; Godinot et al., 2024).. However, the challenge
of designing audits that are robust to advanced manipulation
strategies remains open. The idea of using auditor prior
knowledge that we formalize in this work has been implic-
itly studied in different contexts. Based on active learning
techniques work has studied how auditors could leverage
knowledge about the hypothesis class (Yan & Zhang, 2022;
Godinot et al., 2024). In a more practical setting, Tan et al.
studied using model distillation methods (Tan et al., 2018)
to use prior about the ground truth and hypothesis class (Tan
et al., 2018).

7. Conclusion and Discussion
We investigated, both theoretically and experimentally, the
conditions under which an auditor can or cannot be manipu-
lated when auditing with a prior. We introduced an empirical
method for tuning the manipulation detection threshold to
maximize the auditor’s probability of detecting malicious
platforms.

While our work offers regulators a framework for defend-
ing against audit manipulations, the path to accountability
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extends much further. A significant gap remains between
audit evaluations and the actual mitigation of identified is-
sues (Raji et al., 2021; Mukobi, 2024). Moreover, one-time
audits are inherently limited, as platforms can alter their
models in harmful ways after the audit has concluded. Ad-
dressing these challenges in future work will require the de-
velopment of continuous or adaptive auditing mechanisms,
potentially incorporating auditor priors, to ensure sustained
accountability and fairness.

Impact Statement
This work provides both theoretical and empirical analyses
of fairness audits in ML decision-making systems, with a fo-
cus on their vulnerability to strategic manipulations by plat-
forms aiming to evade regulatory scrutiny. By demonstrat-
ing how auditors’ access to prior knowledge can enhance the
robustness of black-box audits, we offer actionable insights
for mitigating potential audit-a manipulations. Our findings
have important implications for policymakers, auditors, and
ML practitioners, underscoring the urgent need for rigorous
auditing frameworks resilient to adversarial behavior.

The societal impact of this work is twofold. On the pos-
itive side, strengthening the robustness of fairness audits
promotes greater accountability for platforms deploying ML
models in high-stakes domains such as finance and health-
care. By mapping the risk landscape of audit manipulation,
our approach advances the development of more trustworthy
ML systems. However, we also draw attention to the limita-
tions of current audit practices, showing that over-reliance
on public priors can be exploited by strategic actors.
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Table 1. Notations

H HYPOTHESIS CLASS
F SET OF FAIR MODELS
Ha SET OF EXPECTABLE MODELS
ha GROUND TRUTH
δ DISTANCE BETWEEN THE GROUNDTRUTH AND THE SET OF EXPECTABLE MODEL
hp ORIGINAL MODEL OF THE PLATFORM
hm MANIPULATED MODEL OF THE PLATFORM
X INPUT SPACE
D DATA DISTRIBUTION
X SAMPLE FROM INPUT SPACE
Y OUTPUT SPACE
Y SAMPLE FROM OUTPUT SPACE
A PROTECTED FEATURE
Z SAMPLE SPACE
Z SAMPLE
n DIMENSION OF Z

A. Proofs and additional theoretical results
As in (Buyl & Bie, 2022), let Z ≜ X × A × {0, 1} denote the sample space, from which the auditor draws samples
Z ≜ (X,A, Y ). The auditor sample the binary predictions Ŷ ∈ {0, 1} from a probabilistic classifier h : X → [0, 1] that
assigns a score h(X) to the belief that a sample with features X belongs to the positive class. It is assumed that X ⊂ RdX

and A = {[A0, A1]/A0, A1 ∈ {0, 1}} = {[1, 0], [0, 1]}(the one-hot encoding of the protected feature with two groups). We
also assume that Ha is an open set of Z .

We denote F the set of all score functions f : X → {0, 1} that satisfy (PDP):

F ≜ {f : X → {0, 1} : EZ [g(Z)f(X)] = 0n}

with ∀k ∈ [2], gk = Ak

EZ [Ak]
− 1, 0n a vector of n = dF zeros.

Assuming that the predictions Ŷ |X are randomly sampled from a probabilistic classifier h(X), then the traditional fairness
notion of demographic parity (DP) is equivalent to PDP. But if Ŷ is not sampled from h(X) but instead decided by a
threshold, DPD is a relaxation of the actual DP notion. That is to say, F is the set of all score functions that are fair regarding
the demographic parity on A.

As F is the kernel of the linear transformation f : EZ [g(Z)f(X)], F is a hyperplane of Z .

As F is a hyperplane of Z , it is dense or closed in Z .

A.1. Cases where F is dense in Z .

Lemma A.1. If F is dense in Z , the auditor has a probability to detects it as manipulated equals to zero.

Proof. If F is dense in Z then for every function f ∈ Z , every open neighborhood of f intersects F . In particular, it always
exists a model hm ∈ F that is in a neighborhood of hp and in Ha. In that case, hm is fair and expectable, so the auditor has
a probability to detects it as manipulated equals to zero.

This case is a pathological case where the platform can still appear fair and honest. For the next theoretical results, we are
interested in the case where F is closed in Z .

A.2. Cases where F is closed in Z .

If F is a hyperplan closed in Z , it has an empty interior (i.e. ∂F = ∅) as its codimension is 1. In the following, we can thus
use F instead of ∂F , as both are equals.

13
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Similarly, we can define the normal vector to F which is actually the vector that is used for all the projections we use in this
paper. In Equation (6), we defined h∗

m = projF (hp) (i.e. h∗
m is the orthographic projection of the expectable model hp in

the set of fair models F).

Having an hyperplan lead to the natural definition of (hyper)cylinder, that we use in the following theorem.

Definition A.2. A right cylinder C(H,B) is the set of all points whose orthographic projection on a hyperplane H lies in a
set B with B a subset of the boundary of H . B is called the base of the cylinder.

Theorem A.3. The probability Puf that the auditor correctly detects a malicious platform trying to be fair is
P (Ha\C(F ,Ha ∩ ∂F)|Ha).

Proof. The auditor correctly detects a malicious platform trying to be fair if and only if the manipulated model is fair but
not expectable. The manipulated model is fair but not expectable if and only if the orthographic projection h∗

m of hp in F is
not in Ha ∩ ∂F . Thus, the manipulated model is fair but not expectable if and only if hp /∈ C(F ,Ha ∩ ∂F) (following
Definition A.2). As by assumption hp ∈ Ha (Equation (4)), it means that hp ∈ Ha\C(F ,Ha ∩ ∂F). The auditor correctly
detects a malicious platform trying to be fair with probability P (Ha\C(F ,Ha ∩ ∂F)|Ha).

Theorem 4.3 is a special case of Theorem A.3 with additional assumption. We now prove the main Theorem Theorem 4.3.

Theorem 4.3 (Prior-Uniform detection rate). Under the dataset prior of Definition 4.1 with L defined as the ℓ2 norm, and
the uninformative prior assumption, the probability that the auditor correctly detects a malicious platform trying to be fair is

1− 1

Wn

(∫ arccos(δ/τ)

0

sinn(θ)dθ − δ

τ

(
1− δ2

τ2

)(n−1)/2
)
.

with δ = d(ha,F), the distance of ha to F and Wn is the n-term of Wallis’ integrals.

Proof. As established in Theorem A.3, Puf = P (Ha\C(F ,Ha ∩ ∂F)|Ha).

The probability P (Ha\C(F ,Ha ∩ ∂F)|Ha) is the probability to be in the ball Ha without the probability to be in the
intersection between the ball Ha and the cylinder C(F ,Ha ∩ ∂F). In the following, we denote V #

n (τ, δ) this quantity.

As Ha is a ball, its volume is:

V ball
n (τ) =

πn/2τn

Γ(n+2
2 )

with Γ(z) =
∫∞
0

tz−1e−tdt (NIST, 2013).

The volume of the intersection between the cylinder and the ball is the sum of the three following volumes:

• the solid cylinder with height between −δ and δ

• the spherical cap of Ha that is above the previous cylinder (i.e. the part of Ha with height between δ and τ )

• the spherical cap of Ha that is bellow the previous cylinder (i.e. the part of Ha with height between −δ and −τ )

According to (Li, 2010), the volume of each spherical cap is

V cap
n (τ, δ) =

π(n−1)/2τn

Γ(n+1
2 )

∫ arccos(δ/τ)

0

sinn(θ)dθ

And the volume of the cylinder of height 2δ is

V cylinder
n (τ, δ) = 2δV ball

n−1(
√

τ2 − δ2)

Thus,

V #
n (τ, δ) = V ball

n (τ)− 2V cap
n (τ, δ)− V cylinder

n (τ, δ)
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=
πn/2τn

Γ(n+2
2 )

− 2
π(n−1)/2τn

Γ(n+1
2 )

∫ arccos(δ/τ)

0

sinn(θ)dθ − 2δ
π(n−1)/2(

√
τ2 − δ2)n−1

Γ(n+1
2 )

According to Theorem A.3, the probability that the auditor correctly detects a malicious platform trying to be fair is
P (Ha\C(F ,Ha ∩ ∂F)|Ha). That is to say, it is the ratio of V #

n (τ, δ) over V ball
n (τ):

Puf = P (Ha\C(F ,Ha ∩ ∂F)|Ha)

=
V #
n (τ, δ)

V ball
n (τ)

= 1− 2
Γ(n+2

2 )

Γ(n+1
2 )

π(n−1)/2

πn/2

∫ arccos(δ/τ)

0

sinn(θ)dθ − 2δ
(τ2 − δ2)(n−1)/2

τn
Γ(n+2

2 )

Γ(n+1
2 )

π(n−1)/2

πn/2

= 1− 2√
π

Γ(n+2
2 )

Γ(n+1
2 )

∫ arccos(δ/τ)

0

sinn(θ)dθ − 2δ√
π

(τ2 − δ2)(n−1)/2

τn
Γ(n+2

2 )

Γ(n+1
2 )

= 1− 2√
π

Γ(n+2
2 )

Γ(n+1
2 )

(∫ arccos(δ/τ)

0

sinn(θ)dθ − δ
(τ2 − δ2)(n−1)/2

τn

)

The function Γ can be written with Wallis’ integrals as: Wn =
√
π
2

Γ(n+1
2 )

Γ(n+2
2 )

with ∀n,Wn =
∫ π/2

0
sinn(θ)dθ.

In the other hand,

δ
(τ2 − δ2)(n−1)/2

τn
=

δ

τ

(τ2 − δ2)(n−1)/2

τn−1

=
δ

τ

(
τ2 − δ2

τ2

)(n−1)/2

=
δ

τ

(
1− δ2

τ2

)(n−1)/2

Thus, Puf = 1− 1
Wn

(∫ arccos(δ/τ)

0
sinn(θ)dθ − δ

τ

(
1− δ2

τ2

)(n−1)/2
)
.

Before dealing with this complete expression, we propose some particular cases that are easily interpretable.

Corollary A.4. If Ha is a ball centered in the ground-truth ha that is tangent to F , then the auditor has a probability one to
correctly detect a malicious platform trying to be fair.

Ha = B(ha, τ) ∧ τ = δ =⇒ Puf = 1.

with δ = d(ha,F), the distance of ha to F .

Proof. If Ha is tangent to F then δ = τ . Thus, arccos(δ/τ) = arccos(1) = 0 and
∫ arccos(δ/τ)

0
sinn(θ)dθ = 0.

Thanks to the formula of Theorem 4.3 with δ/τ = 1, Puf = 1− 1
Wn

(0− 0) = 1.

If Ha is tangent to F , Puf = 1.

This corollary means that by reducing the threshold τ to the minimal value (δ), the auditor is sure to detect any manipulation
of the platform.
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Corollary A.5. If Ha is a ball centered in the ground-truth ha that is fair, then the auditor has a probability zero to correctly
detect a malicious platform trying to be fair.

Ha = B(ha, τ) ∧ ha ∈ ∂F =⇒ Puf = 0.

Proof. If ha ∈ ∂F then δ = 0 and arccos(δ/τ) = arccos(0) = π/2 in the formula of Theorem 4.3. Thus, Puf =
1− 1

Wn
(Wn − 0) = 0.

This last case is the case where the ha of the auditor is fair. Intuitively, if ha is fair, half of the model that the platform can
construct are naturally fair and the other half are naturally unfair. Thus, it is very easy to change from an unfair model to a
fair model without changing too much the honest model. Thus, detecting such manipulation is very hard for the auditor.

Now, we study the general expression of Puf in Theorem 4.3. In particular, we study a lower bound of Puf to study when
the probability is strictly positive.

Corollary 4.4 (Detection rate lower bound). If n is even,

1

Wn

δ

τ

(
1− δ2

τ2

)(n−1)/2

≤ Puf ≤ 1.

Proof. Puf = 1− 1
Wn

(∫ arccos(δ/τ)

0
sinn(θ)dθ − δ

τ

(
1− δ2

τ2

)(n−1)/2
)

Wn =
∫ arccos(δ/τ)

0
sinn(θ)dθ +

∫ π/2

arccos(δ/τ)
sinn(θ)dθ

So, 1
Wn

∫ arccos(δ/τ)

0
sinn(θ)dθ ≤ 1 (with n even).

And Puf ≥ 1
Wn

δ
τ

(
1− δ2

τ2

)(n−1)/2

Lemma A.6. The lower bound according to δ/τ has two extremums that are for δ/τ = 1 or δ/τ = γ with γ =
√
n+3−

√
n−1

2 .

Remark. Note that γ only depend on the dimension n and leads to 0 when n leads to infinity.

Proof. We define fn (the lower bound) s.t.

fn(δ, τ) =
δ

Wnτ

(
1− δ2

τ2

)(n−1)/2

Change of variable x = δ
τ , f(x) = x

Wn (1− x2)(n−1)/2.

We are interested in cases where τ > δ, i.e. 0 < x < 1.

Moreover, f has an extremum iff f ′ = 0 somewhere in [0, 1].

∀x ∈ [0, 1],Wnf
′(x) = (1− x2)(n−1)/2 − (n− 1)x2(1− x2)(n−3)/2

= (1− x2)(n−3)/2(x2 +
√
n− 1x− 1)(x2 −

√
n− 1x− 1)

i.e. f ′(x) = 0 for the following elements:

• x = −1 < 0

• x = 1
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• −
√
n−1−

√
n+3

2 < 0

• −
√
n−1+

√
n+3

2 ∈ [0, 1]

•
√
n−1−

√
n+3

2 < 0

•
√
n−1+

√
n+3

2 > 1 (if n ≥ 2)

So f has two local extremums in [0, 1], one for 1 and one for γ =
√
n+3−

√
n−1

2 .
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