
MATCH: A Decentralized Middleware for Fair
Matchmaking In Peer-to-Peer Markets

Martijn de Vos
Delft University of Technology

Georgy Ishmaev
Delft University of Technology

Johan Pouwelse
Delft University of Technology

Abstract
Matchmaking is a core enabling element in peer-to-peer
markets. To date, matchmaking is predominantly performed
by proprietary algorithms, fully controlled by market op-
erators. This raises fairness concerns as market operators
e�ectively can hide, prioritize, or delay the orders of speci�c
users. Blockchain technology has been proposed as an alter-
native for fair matchmaking without a trusted operator but
is still vulnerable to speci�c fairness attacks.
We present MATCH, a decentralized middleware for fair

matchmaking in peer-to-peer markets. By decoupling the dis-
semination of potential matches from the negotiation of trade
agreements, MATCH empowers end-users to make their own
educated decisions and to engage in direct negotiations with
trade partners. This approachmakesMATCH highly resilient
against malicious matchmakers that deviate from a speci�c
matching policy. We implement MATCH and evaluate our
middleware using real-world ride-hailing and asset trading
workloads. It is demonstrated that MATCH maintains high
matching quality, even when 75% of all matchmakers is mali-
cious.We also show that the bandwidth usage and order ful�l
latency of MATCH is orders of magnitude lower compared
to matchmaking on an Ethereum blockchain.

CCSConcepts •Computer systems organization→Peer-
to-peer architectures; • Networks → Peer-to-peer proto-
cols.

Keywords Fair Matchmaking, Decentralized Middleware,
Matching Middleware, Peer-to-Peer Markets

ACM Reference Format:
Martijn de Vos, Georgy Ishmaev, and Johan Pouwelse. 2020.MATCH:
A Decentralized Middleware for Fair Matchmaking In Peer-to-Peer
Markets. In 21st International Middleware Conference (Middleware
’20), December 7–11, 2020, Delft, Netherlands. ACM, New York, NY,
USA, 15 pages. h�ps://doi.org/10.1145/3423211.3425678

Middleware ’20, December 7–11, 2020, Delft, Netherlands
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8153-6/20/12.
h�ps://doi.org/10.1145/3423211.3425678

1 Introduction
The deployment of peer-to-peer markets by companies op-
erating in the sharing economy has been hailed to boost the
global economy [34]. Beyond the promises of increased eco-
nomic welfare, the broader appeal of the sharing economy
also lies with the development of new modes for the sharing
of unused or underutilized assets, such as cars and houses.
Estimations on the impact of the sharing economy suggest
an increase in global revenue from $14 billion in 2014 to $335
billion by 2025, partially enabled by major platforms such as
Uber (ride-hailing) and AirBnb (house-sharing) [42].
The e�ect of these platforms on peer-to-peer markets,

however, is not unequivocal. It has been argued that market
operators exploit their prominent position and charge high
transaction fees for their role as intermediary [44]. Market
operators gain unprecedented power through the control of
all the key enabling elements for electronic marketplaces,
including settlement, arbitrage, and matchmaking [3, 14, 40].
The latter element is of particular interest as at the dawn of e-
commerce matchmaking solutions were envisioned to create
open, fair, and competitive markets on the Internet [52].

Matchmaking in electronic markets can be considered as
the process of mediating between supply and demand [54].
Currently, centralized matchmaking is the approach taken by
most commercial market operators [3, 40]. With centralized
matchmaking, market operators deploy proprietary servers
that are optimized to e�ciently match new buy and sell
orders with existing ones within a speci�c domain. A key
advantage of centralized matchmaking is that the market
operator can match incoming orders with the (current) best
compatible order since they maintain all market information.
Unfortunately, this also enables market operators to ex-

ploit the marketplace through the practices of unfair match-
making to increase intermediary revenues [27]. Manipu-
lation in the matchmaking process was exposed through
analysis of di�erent e-commerce platforms and �nancial ex-
changes [35, 40]. An emblematic example of this issue is the
practices of Uber, implementing price discrimination and
phantom matches to manipulate the behaviour of users [9].
It has recently been demonstrated through experiments that
the matchmaking algorithm of Uber undermines revenues
of drivers to the advantages of the platform operator [7].
As researchers point out, unfair matchmaking is a complex,
multilayered issue that can not be mitigated only with al-
gorithmic adjustments [7]. We suggest that this problem

74

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/

Middleware ’20, December 7–11, 2020, Del�, Netherlands de Vos, et al.

requires a next step towards a di�erent approach to match-
making in peer-to-peer markets.
It is technologically feasible to have market participants

carry out the matchmaking process themselves, without
trusted operator. In particular, blockchain technology pro-
vides the means to record and match market orders on a
distributed ledger [50]. Smart contracts, self-executing pro-
grams stored on a blockchain, are capable of executing the
matchmaking logic [33]. Even though it seems like an ap-
pealing solution to fairness issues, the consensus algorithm
managing the blockchain ledger is vulnerable to various at-
tacks against fairness, speci�cally, transaction re-ordering
and front-running [21, 29, 30]. These attacks e�ectively al-
low consensus participants to in�uence how speci�c orders
are matched. In addition to these threats, scalability issues
inherent to all the blockchain protocols based on a global
consensus carry signi�cant limitations on the speed ofmatch-
making, as we will experimentally show in Section 6.3 [16].
The ine�ectiveness of matchmaking on a blockchain is

also identi�ed by various decentralized exchanges that are
operated by a blockchain, also called DEXes [21, 31, 57]. In
response, these DEXes opt for a federated approach where
any participant can host a matchmaking server and can act
as a matchmaker. In practice, most orders in these DEXes
are managed by servers that are under the control of the
exchange operator and therefore still carry limitations on
the achievable level of fairness desirable on such markets.
In summary, there is a dilemma of choice between two

desirable properties of matchmaking mechanisms. E�ciency
of matchmaking achievable through the concentration of
orders by a trusted central party, versus provable fairness of
matchmaking achievable with the transparency of decentral-
ized on-chain matchmaking. We argue, however, that this
dilemma does not present an insurmountable obstacle for the
implementation of e�cient and fair matchmaking solutions.

Contributions.We present MATCH, a decentralized mid-
dleware for fair matchmaking in peer-to-peer markets. Our
solution is based on the principle of strictly decoupling the
matching process from the negotiation of trade agreements.
Our �rst contribution is the MATCH protocol (Section 4)
where any user can act as a matchmaker for others. Match-
makers store open orders created by users, match incoming
orderswith existing ones, and inform order creators about po-
tential matches. Users then engage in trade negotiation with
prospective counterparties. This approach makes MATCH
highly resistant against matchmakers which deviate from
a standard matching algorithm. The second contribution is
the generic MATCH middleware architecture (Section 5).
MATCH does not rely on the speci�cations of orders, and is
therefore re-usable across di�erent trading domains.

We devise the �rst decentralized and fair alternative to the
Uber ride-hailing market (Section 6.1), to the best knowledge
of the authors. Even when 75% of all drivers prioritize their
own ride services during matchmaking, negotiated matches

MaWchiQg
EQgiQe

OUdeU
BRRN

Matchmaking serverUsers

TUadiQg
MechaQiVP

(TM)

YaOid
RUdeUV

PaWcheV

QRWiÀcaWiRQV XSdaWe

VXbPiW
RUdeUV

A3I GaWeZa\

Figure 1. A generic model for centralized matchmaking in
peer-to-peer markets, using a single matchmaking server.

in our market maintain a high quality. Furthermore, with
a real-world asset trading workload (Section 6.2) we show
that MATCH is asset-agnostic, enabling the deployment of
open and universal matchmaking infrastructures. Finally, we
show that MATCH has bandwidth usage and order ful�l la-
tencies that are several orders of magnitude lower compared
to matchmaking on an Ethereum blockchain (Section 6.3).

2 Towards Decentralized Matchmaking
In our approach, users in a peer-to-peer market conduct
the matchmaking process themselves. To elaborate on the
components used in our solution, we �rst devise a generic,
centralized model for matchmaking. We then identify tech-
nical concerns that arise when decentralizing this model.

2.1 Centralized Matchmaking
We devise a generic model for centralized matchmaking in
peer-to-peer markets, see Figure 1. This model is the starting
point for our fair matchmaking solution and is inspired by
existing architectures that have been widely used by �nan-
cial markets [35, 53]. Users create orders, which they then
submit to the matchmaking server. An order speci�es inter-
est to buy or sell assets, resources, or services (orders are
further discussed in Section 4.1). Many markets deploy one
or more gateways that �lter out invalid orders and mitigate
targeted attacks on the matchmaking server, such as a DDoS
attack [35]. Valid orders are inserted in the order book, a local
data structure that bundles all open and valid orders.

Upon the insertion of a new order in the order book, it is
forwarded to the matching engine. This component searches
for existing orders in the order book that match with the
newly submitted order. In particular, an incoming order
should be matched with the current best compatible order(s).
Whether two orders match is predicated by a matching pol-
icy. For example, the price-time strategy is a predominant
matching policy in �nancial markets where orders are �rst
matched based on their price and then on their creation
time (prioritizing older orders) [35]. The matching engine
can establish multiple matches for a single order, e.g., a buy
order for a large number of assets can be matched with mul-
tiple (smaller) sell orders. Established matches should be
“executed”, which is an application-dependent operation. In
a �nancial exchange, for example, the speci�ed assets in

75

MATCH: A Decentralized Middleware for Fair Matchmaking Middleware ’20, December 7–11, 2020, Del�, Netherlands

the matched orders should be exchanged between the or-
der creators. In a ride-hailing market, however, the driver
and passenger should be put in contact with each other. We
model the component that executes established matches as
the trading mechanism (TM), which we consider external to
the model in Figure 1. After established matches have been
executed by the TM, the a�ected orders in the order book are
updated (or removed if they are completed), and the order
creators are noti�ed of the match execution.

2.2 Decentralized Matchmaking
The model in Figure 1 allows the server operator to conduct
unfair matchmaking by manipulating the matching engine
(or policy) to hide, prioritize, or delay speci�c orders. To
address this situation, we propose a solution where users
(order creators) themselves carry out matchmaking while
ensuring that no single user can authoritatively decide on
how the orders of other users are executed. We �rst consider
a basic, decentralized architecture where every user operates
a single matchmaking server. A user then submits a new
order to all matchmaking servers, and all servers forward
established matches to the same TM. The TM executes in-
coming matches in a FCFS manner. This approach, however,
raises the following technical concerns:

1) How does a decentralized matchmaking architecture pro-
cess matches of the same order found by distinct matchmaking
servers? Deploying a single matchmaking server prevents
the situation where distinct matchmaking servers submit the
same or di�erent (valid) matches for the same order to the
TM. Assuming a FCFS execution of incoming matches by the
TM, having multiple matchmaking servers sending matches
to the TM likely results in the situation where matches of
the same order are executed multiple times, resulting in an
incorrect order state. To ensure correctness, our replicated
matchmaking architecture requires additional coordination.
One solution involves the periodic execution of a Byzan-

tine fault tolerant consensus protocol bymatchmaking servers
to decide which matches are sent to the TM. Unfortunately,
reaching consensus is a resource-intensive process and exist-
ing protocols, e.g., PBFT [12] or Proof-of-Work [25], do not
scale when the number of matchmaking servers or orders
increases [55]. We avoid the need for consensus by having
users negotiate trade agreements with potential counterpar-
ties (further described in Section 4.4). Upon a positive nego-
tiation outcome, these trade agreements, digitally signed by
both parties, are sent to the TM and executed. Matchmakers
only notify users about potential matches for their orders.
Since it is in the best interest of users to correctly manage
their orders, rational users will not sign trade agreements
that would result in an incorrect order state.

2) Is it required to disseminate a new order to all matchmak-
ing servers? In the architecture described above, a user sends
a new order to all matchmaking servers. This results in full
replication of the order book, under the assumption that all

matchmaking servers eventually receive every new order.
The problem is that a �ooding-based dissemination strategy
leads to severe performance degradation when the number
of matchmaking servers increases, as illustrated by deployed
peer-to-peer applications like Gnutella [13]. We address this
concern by sending a new order to a small, random subset
of all matchmaking servers such that it is still likely that at
least one honest matchmaking server receives compatible
orders (further described in Section 4.2).

3 System and Threat Model
We address the aforementioned concerns and present a de-
centralizedmiddleware for fairmatchmaking, namedMATCH.
We now outline the system and threat model of MATCH.

Market and order model.We adopt a continuous mar-
ket model where orders are matched in a FCFS manner. This
model is commonly used by peer-to-peer markets (e.g., by
Uber). To represent a two-sided market with supply and
demand, we introduce two order types: o�ers and requests.
O�ers, respectively requests, indicate interest to sell, respec-
tively buy speci�c assets, services, or resources. To ensure re-
usability across di�erent markets, matchmakers in MATCH
can host multiple order books and manage orders with dif-
fering speci�cations. Each order has a quantity @, which is
an integer value indicating the number of assets, services, or
resources being o�ered or requested. The state of an order
can be either open (when the order has a positive quantity,
@ > 0), completed (when all quantity in the order has been
traded, @ = 0), cancelled (when the order has been cancelled
by its creator) or expired (when the timeout of the order has
expired). The structure and content of an order are further
elaborated in Section 4.1.

Actors.We refer to an entity in the MATCH network as a
node. A node can act as a user, matchmaker, or take on both
roles. Users disseminate o�ers and requests to matchmakers.
MATCH requires the active participation of users to negoti-
ate with other users and thus requires users to be online for
their order to be completed (also see Section 4.4).

Network. We aim for MATCH to be deployed in a WAN
environment. We consider an unstructured peer-to-peer net-
work where each node knows the network addresses of ac-
tive matchmakers. This can be achieved by maintaining a list
of matchmakers, e.g., on a website or through a decentral-
ized publishing network like the Kademlia DHT [36]. New
matchmakers enrol themselves on this list while matchmak-
ers leaving the network un-enrol from this list. As we show
in Section 4.2, MATCH is able to deal with o�ine match-
makers that are still enrolled on the list. Users periodically
download the latest version of this list to keep up with the
set of active matchmakers in MATCH.

Each node possesses a public and private key. The public
key is used to identify the node in the network whereas the
private key is used to sign all outgoing network messages.

76

Middleware ’20, December 7–11, 2020, Del�, Netherlands de Vos, et al.

PaWch

UeTXeVW

RffeU SURSRVe

SURSRVe (RSWiRQaO)

acceSW/UejecW

MaWchPaNeUV

UVeU 1 UVeU 2

PaWch
TXeXe

1

2

3

4 VeOecW PaWch

5

6

7

RUdeU
XSdaWe

RUdeU
XSdaWe MaWchPaNeUV

UVeU 1 UVeU 2

10
11

Order creaWion & diVVeminaWion
(SecWLRQ 4.1 - 4.3)

Order negoWiaWion
(SecWLRQ 4.4)

MaWch e[ecXWion & order XpdaWeV
(SecWLRQ 4.5)

UVeU 1 UVeU 2
TMe[ecXWe� � e[ecXWe

Figure 2. High-level overview of the MATCH protocol and the message exchange between users and matchmakers.

We assume that the digital identity of each node in MATCH
is tied to a real-world identity, preventing uncontrolled iden-
tity creation (also known as the Sybil Attack) [18]. This is
not an unrealistic requirement since many electronic mar-
ketplaces already impose identity veri�cation in order to
participate [17]. Identity veri�cation can, for example, be
achieved by using the services of a centralized registration
authority. We note, however, that a centralized dependency
might be undesirable in marketplaces with a decentralized
structure. In such marketplaces, we encourage the use of
(semi-)decentralised solutions for identity management, like
self-sovereign identities [39, 49].

Threat Model. In this work, our threat model orients
around malicious matchmakers that deviate from a standard
matching policy and match incoming orders according to a
custom policy. For example, a matchmaker can deliberately
match an incoming o�er with the second-best request in
their order book and match one of their own o�ers with the
hidden request instead. This threat model also captures collu-
sion, the situation where a subset of matchmakers agrees to
match orders according to a custom policy to gain economic
bene�t as a group. Malicious matchmakers are often driven
by economic incentives, e.g., when a matchmaker wants to
prioritize its own orders or when a group of matchmakers
collectively attempt to drive competitors out of business by
ignoring their orders. Malicious matchmakers directly a�ect
market fairness since they treat incoming orders unequally.
We assume that cryptographic protocols are secure and that
the computational power of adversaries is bounded.

4 The MATCH Protocol
We visualize theMATCH protocol and the message exchange
between users and matchmakers in Figure 2. The key idea
behind our protocol is matchmakers only inform users about
matches, and that users negotiate a trade directly with coun-
terparties. First, users send new o�ers and requests to one or
more matchmakers (1� + 2�). Matchmakers match incoming
orders with existing orders in their order books and notify
users about potential matches (3�). Users aggregate potential
matches of a speci�c order in a match queue. Some period
after receiving the �rst match for a speci�c order, a user
starts to process matches in the associated match queue (4�),
starting with the best match, and negotiates with the user

behind the matched order (5� - 7�). When the negotiating
parties reach a trade agreement (in other words, intend to
ful�l their orders with each other), they execute the negoti-
ated trade agreement by sending it to the TM (8� + 9�). The
negotiating parties then inform the matchmakers about the
executed trade so they can update the state of the a�ected
orders accordingly (10� + 11�). The matchmakers are also in-
formed about a negative outcome during the negotiation
process. If an order is still open, a user selects the next best
item from the associated match queue, if it is non-empty, and
initiates the next negotiation process. This repeats until the
match queue is empty or the order is completed. The steps
in the MATCH protocol are now further explained.

4.1 Order Creation
In MATCH, users create new orders to indicate their willing-
ness to buy or sell resources, services and assets. Listing 1
exempli�es the structure of an order in MATCH that speci-
�es a transportation request in a ride-hailing market. This
order, in JSON format, includes the waiting location of the
order creator in the data �eld. The content of the data �eld
is �exible and depends on the context in which the order
is created. It can contain many attributes and constraints
that a�ect how the order is matched. Each order has a type
�eld which is a string value indicating the type of the order.
The order type is used by matchmakers to apply the right
policies for validation and matching, and to store the order

Listing 1. An order in a ride-hailing market (in JSON for-
mat).

1 {�timestamp�: �2020-02-24T09:09:19+0000�,
2 �type�: �RIDE�,
3 �timeout�: 3600,
4 �is_offer�: false, // request for transportation
5 �public_key�: �82ae2f8f0c473cbdf63b920...�,
6 �signature�: �d54af87c8f8e6d917729d14...�,
7 �identifier�: 5,
8 �quantity�: 1,
9 �data�: {
10 �latitude�: �40.712776�,
11 �longitude�: �-74.005974�
12 } }

77

MATCH: A Decentralized Middleware for Fair Matchmaking Middleware ’20, December 7–11, 2020, Del�, Netherlands

in the appropriate order book. In Listing 1, the RIDE type in-
dicates an order in a ride-hailing market. Similarly, an order
with type EUR/USD can indicate an order trading Euro for
Dollar. The is_offer �eld is a �ag that indicates whether
the order is an o�er or a request. The identi�er in an order
is an integer value that indicates the position of the order
in the sequence of all orders created by that user. Together
with the public key of the order creator, it uniquely identi�es
an order in the network. The digital signature in an order
allows matchmakers to verify its authenticity. Inclusion of
the timeout value prevents orders from being included in
order books for an inde�nite amount of time. Finally, each
order has a quantity, which is an integer value that speci�es
the amount of assets, services or resources being o�ered or
requested. After creation, a user serializes the order in an
order message and sends it to matchmakers.
Users can cancel an open order, say $, at any time by

sending a cancel message with the identi�er of $ and its
public key to matchmakers. A cancel message for $ should
be sent to the same matchmakers as the order message that
contained the description of$. Therefore, users keep track of
the matchmakers to which they have sent an ordermessage.
Upon reception of a cancel message, matchmakers remove
the cancelled order from their order book.

4.2 Order Dissemination
In the replicatedmatchmakingmodel proposed in Section 2.2,
a new order is disseminated to all matchmakers. We now
address concern 2 from Section 2.2 and show how to consider-
ably decrease the fanout of ordermessages (i.e., the number
of matchmakers that a speci�c ordermessage reaches) while
still ensuring a high probability that a new order reaches a
matchmaker with the current best matching order in their
order book. Speci�cally, we send a new order to a random
subset of all matchmakers. Let 'A4@ and '> 5 5 indicate the
sets of matchmakers that receive a speci�c request and o�er,
respectively. The probability that at least one matchmaker
will receive both a speci�c o�er and request quickly goes
to one, even when the order fanout is low compared to the
number of matchmakers. This phenomena is also known
as the “birthday paradox” and is in practice exploited when
computing hash collisions or when detecting a double spend
attack in the Bitcoin network [45].
Determining to how many matchmakers a new order

is sent, is key. In particular, we are interested in comput-
ing the probability that at least one matchmaker receives
a matching o�er and request. If we consider a network
with 1’000 matchmakers where new orders are disseminated
to 50 matchmakers, this probability is given by 1000�50

1000 ·
1000�50�1

1000 · · · 1000�50�491000 . The probability that there is at least
one matchmaker amongst all< matchmakers receiving both
an o�er and a request, with order fanout 5 , is equal to:

% ('A4@ \ '> 5 5 < ;) = 1 �
5 �1÷
8=0

�< � 5 � 8

<

�
(1)

The value of % ('A4@ \ '> 5 5 < ;) quickly increases when
5 increases. Even if< = 1000000 and 5 = 500 (i.e., orders
are sent to only 0.5% of all matchmakers), the probability
that at least one matchmaker receives both a matching o�er
and a request, is already 97.7%. In this setting, it reduces the
required fanout of an order message from 200’000 (when
disseminating a new order to all matchmakers) to merely
1’000, thus signi�cantly reducing the network tra�c required
for order dissemination. Note that the value of< is known to
users in MATCH since they possess a list of all matchmakers.
Given a target value for % ('A4@ \ '> 5 5 < ;), users compute
an appropriate fanout value themselves.

Malicious Matchmakers. Equation 1 assumes that all
matchmakers in the set 'A4@ \ '> 5 5 follow the protocol and
actually inform order creators when receiving matching or-
ders. This assumption violates our threat model since mali-
cious matchmakers can respond with sub-optimal matches,
or not respond with matches at all. Therefore, we modify
Equation 1 to account for the situation where a fraction A
of all matchmakers is malicious. Intuitively, this situation
would require a higher value of 5 in order to reach at least
one honest matchmaker. Given a fraction of malicious match-
makers A , % ('A4@ \ '> 5 5 < ;) is now equal to:

% ('A4@ \ '> 5 5 < ;) = 1 �
5 �1÷
8=0

� (< � b(1 � A) 5 c � 8

<

�
(2)

We show in the next subsection that this is an appropriate
modelling of malicious matchmakers. The rationale behind
this model is as follows. The quality of matches from mali-
cious matchmakers is likely to be lower compared to those
received from honest matchmakers. Therefore, there is a
high probability that the e�ect of malicious matchmakers is
negated upon receivingmatches from an honest matchmaker,
since a user will process the matches of honest matchmak-
ers �rst. Reaching honest matchmakers in the presence of
malicious matchmakers requires a higher fanout value.
When a matchmaker receives an order message describ-

ing an order$, it matches$ with existing orders in its order
book with the same type, according to a matching policy
(see Section 5). For each order matched against$, the match-
maker constructs a match message and sends it to the user
that created $ (step 3� in Figure 2). A match message con-
tains the full speci�cations of the matched orders, and the
network address of the user behind the matched order. This
network address is used by the receiver of the match mes-
sage to initiate the order negotiation process with the user
behind the matched order.

78

Middleware ’20, December 7–11, 2020, Del�, Netherlands de Vos, et al.

RQ¬propoVe
PeVVage

RUdeU iV
RSeQ?

RUdeU haV
XQlRcked
TXaQWiW\?

caQ WUade
all SURSRVed

TXaQWiW\?

no
no

iQfRUP
PaWchPakeUV

lRck
UeVRXUceV

XQlRck¬
UeVRXUceV

RQ bXV\
PeVVage

XQlRck
UeVRXUceV

Ue-add WR
PaWch TXeXe

VeQd
rejecW

VeQd
propoVe

VeQd
bXV\

VeQd
accepW

RQ accepW
PeVVage

RQ rejecW
PeVVage

iQYRke
TM

no no

\es\es\es \esSURSRVal
acceSW-
able?

Figure 3. The �ow diagram (in UML format) when receiving a message during the negotiation process for a speci�c order.

4.3 Match Queue
Upon receiving a match message from a matchmaker, a user
contacts the creator of thematched order and initiates a nego-
tiation process (further discussed in Section 4.4). A potential
strategy is that the user immediately contacts another user
upon the arrival of a matchmessage. This possibly minimizes
the time for an order to be completed. However, this strategy
leaves the user vulnerable to an attack where a malicious
matchmaker is the �rst to send a speci�c match message to
a user, which immediately triggers the negotiation process.
The quality of the received match described by the match
message might be poor and the user might have received
a match with a higher quality if it would have waited for
additional matches from honest matchmakers.

To address this issue, incoming match messages for a spe-
ci�c order are �rst stored in a match queue. When a user
receives the �rst match message for one of its o�ers (or re-
quests), say $, it creates a new match queue for $. Each
entry in the match queue of o�er (or request) $ is a tuple
(0,') where ' is a request (or o�er) that matches with o�er
(or request) $. 0 indicates the number of failed negotiation
attempts for '. The value of 0 is locally tracked by each user.
Removing items from the match queue is �rst based on 0
(item with a lower value of 0 have higher priority) and is
then based on the quality of the match (the user prioritizes
negotiation of matches with higher quality). The quality of
a match is an application-speci�c metric that can be consid-
ered as the “distance” between an o�er and a request, and
is computed by the matching policy. An incoming match
message can be inserted in multiple match queues, e.g., in
the match queues for o�ers or requests with the same type
and similar speci�cations.

Before a user starts to select items from a match queue, it
waits for some duration,<0C2⌘ , which we call thematch win-
dow. The value of,<0C2⌘ should be carefully considered: a
higher value of,<0C2⌘ increases the probability of receiving
more and better matches but adds to the order completion

time since a user has to wait longer before starting order
negotiations. Decreasing,<0C2⌘ , however, might result in
missing better matches.,<0C2⌘ also depends on the link la-
tency of the peer-to-peer network. Furthermore,,<0C2⌘ is
in�uenced by the trading domain, e.g., passengers in a ride-
hailing market can usually tolerate an additional wait time of
a few seconds, whereas this increase might be unacceptable
when a user quickly wants to buy some assets in response
to price �uctuations in an asset market. When the match
window expires, a user removes the entry (0,') with the
best quality from the match queue and initiates the order
negotiation process with the user that created '.

4.4 Order Negotiation
In MATCH, users negotiate about their orders with other
users. This negotiation approach increases resilience against
malicious matchmakers since rational users choose to ne-
gotiate about the best incoming matches in order to get the
best deal. When two negotiating users reach a trade agree-
ment, both users send the agreement to the TM, upon which
the trade is executed. This approach addresses question 1 in
Section 2.2 and avoids the need for network-wide consensus.

We now elaborate on the negotiation procedure between
two users. In the following, we assume that user *1 created
o�er $, user *2 created request ', and these two orders
match. Now,*2 has received a matchmessage from a match-
maker, informing*2 about matching o�er$. This puts entry
(0,$) in the match queue associated with '. Order negotia-
tion, based on match queue entry (0,$), starts by*2 locking
quantity in request '. How much quantity is locked depends
on the available quantities in both $ and '. Speci�cally,*2
proposes to trade as much available quantity as possible,
given the speci�cations of $ and '. Explicitly locking quan-
tity in an order prevents a user from engaging in parallel
negotiations for the same resources. MATCH does not en-
force the locking of quantity since we assume that rational
users will correctly manage their orders. After locking the

79

MATCH: A Decentralized Middleware for Fair Matchmaking Middleware ’20, December 7–11, 2020, Del�, Netherlands

quantities in ', *2 sends a propose message to *1, contain-
ing the full speci�cations of ', the identi�er of $, and the
proposed quantity to trade.
Figure 3 shows the control �ow in UML format when a

user receives speci�c messages during the order negotiation
process. We elaborate the negotiation process between users
*1 and*2 according to Figure 3. When*1 receives a propose
message from*2, it �rst checks if its o�er$, which identi�er
is contained in the propose message, is still open. If $ is
expired, has been cancelled, or has been completed already,
*2 immediately responds with a rejectmessage, containing
the reject reason.When*2 receives the rejectmessage from
*1, it unlocks the locked quantity for that negotiation and
selects the next entry from the match queue of its request '.
Since matchmakers might have outdated information about
$ (e.g., when $ has been completed but the matchmaker
has not been noti�ed about this event), *2 forwards the
rejectmessage to the matchmakers that informed*2 about
the match with $. Matchmakers then update the state of $
accordingly when receiving a reject message.

If o�er $ is open, *1 �rst determines if the incoming pro-
posal is acceptable. This step depends on the trading domain
and speci�cally on the application-speci�c data in the or-
der. For example, a matchmaker in a ride-hailing market
can establish a valid match between a passenger and dri-
ver. However, this match might be unacceptable for one of
the matched parties (e.g., when the geographic separation
between the parties is too large). If *1 �nds the proposal
unacceptable, it sends a reject message to*2.
If the proposal is acceptable, *1 checks if it has any un-

locked quantity in the o�er$. If there is no unlocked quantity
available for trade, *1 responds with a busy message to *2,
indicating that it currently has no room for negotiation. In
this situation, *1 is already engaged in negotiations for that
order with other users. Upon receiving a busy message,*2
unlocks the locked quantity in ' and re-adds the entry as-
sociated with the failed negotiation to the match queue of
', incrementing 0 by one. Re-adding this entry to the match
queue will cause *2 to initiate a negotiation with *1 again
later. To prevent a user from immediately retrying a failed
negotiation, a user waits a random period (between 1 and 2
seconds) before sending out another proposemessage when
processing a match queue entry with 0 > 0.

If o�er$ has unlocked quantity,*1 checkswhether the full
proposed quantity can be traded. If so,*1 sends an accept
message to*2, thereby accepting the proposal of*2.*1 also
forwards the accept message to the matchmakers that pro-
posed the match so they can update the state of this order in
their order book. If the proposed quantity is unavailable in
$, *1 makes a counter-proposal by locking as much quan-
tity as possible in $ and by sending a proposal message
back to*2 with this (lower) quantity.*1 and*2 keep send-
ing propose messages with di�ering quantities until one of
them responds with either an accept or a reject message.

It could be that one of the involved parties does not re-
spond during a negotiation, e.g., to deliberately lock quantity
in the orders of another user. To address this situation, all out-
going messages during order negotiation have a �xed negoti-
ation window, indicated by,=46 , after which the user leaves
the negotiation. When this window expires, any locked quan-
tity for this negotiation is released and incoming messages
regarding the expired negotiation are ignored.

4.5 Match Execution and Order Updates
Upon reaching a trade agreement between two negotiating
users, it should be executed by the trading mechanism. To
execute a trade agreement, one party sends the proposemes-
sage to the TM and the other party sends the acceptmessage
to the TM (step 8� and 9� in Figure 2). Each message con-
tains the digital signature of its creator. The TM executes the
trade after having received both these messages. Next, each
involved party individually inform the matchmakers that
originally received their order about the match execution
by sending an update message (step 10� and 11� in Figure 2).
This message contains the order with an updated quantity,
specifying the new interests of the order creator after the
match has been executed. The update message contains an
order with quantity 0 if it has been completed. Upon receiv-
ing an update message, matchmakers update the state of
the changed order accordingly and remove orders that have
been completed.

5 The MATCH Middleware Architecture
We now present the MATCH middleware architecture, visu-
alized in Figure 4. Each user and matchmaker deploy a single
instance of the MATCH middleware as a shared runtime
library. Communication with the middleware by external
applications proceeds through an API, which speci�cations
are included in our open-source implementation. We now
elaborate on the components in the MATCH middleware
architecture.

Network layer. The network layer passes incoming mes-
sages to the MATCH overlay logic and routes outgoing mes-
sages to their intended destination. This layer can be im-
plemented using any networking library with support for
peer-to-peer communication and authenticated messaging.

Overlay logic. The overlay logic processes incomingmes-
sages received by the network layer. It inserts incoming
match messages in the appropriate match queue, discussed
in Section 4.3. It contains policies for order validation which
specify how the validity of an incoming order with a given
type is determined. The validation policy takes into con-
sideration the attributes in the data �eld of the order (see
Listing 1), and checks whether they are valid with respect
to a trading domain. For example, a validation policy for
orders in a ride-hailing market should check whether the
latitude and longitude coordinates are included and within a

80

Middleware ’20, December 7–11, 2020, Del�, Netherlands de Vos, et al.

Match
Priorit\ Queue

Match
Priorit\ Queue

Request
Cache
Request
Cache

NetZork La\er

Order Book

Trading Mechanism (TM)

MaWchLQg
PROLc\

OYerla\ Logic

Matching
Engine

OUdeUV

Match
Queue

Negotiation
Store

MeVVageV

IncRming
Yalid
RUdeU

MaWcheV

IncRming
maWch

NegRWiaWiRnV

R
e
VX
lW

T
Ua
d
e

a
g
Ue
e
m
e
n
W

VaOLdaWLRQ
PROLc\VaOLdaWLRQ
PROLc\VaOLdaWLRQ
PROLc\

Figure 4. The MATCH middleware architecture.

valid range (-90 to 90). We envision that developers share the
implementation of these policies through some distribution
medium (e.g., a website). To increase the trustworthiness and
security of these policies, the policy implementations should
be auditable and attestable by other developers and auditors.
These validation policies can then downloaded by users and
matchmakers that are interesting in participation within a
speci�c trading domain. We provide developers the means to
create custom validation policies, enabling order validation
in di�erent trading contexts. Incoming orders deemed invalid
by the validation policy are discarded and not processed.

Order books. Each matchmaker can host multiple order
books, coloured green in Figure 4, which store orders with
di�ering types. For example, MATCH can maintain an asset
trading order book that stores orders to buy or sell Euros
for Dollars, and another ride-hailing order book that stores
transportation requests and ride o�ers. Maintaining multiple
order books is a key property of MATCH and results in
a single and reusable matchmaking solution that can be
deployed across di�erent domains.

Matching engine. Valid incoming orders are passed to
the matching engine, coloured red in Figure 4. The match-
ing engine attempts to match incoming o�ers and requests
with existing requests and o�ers, respectively. It contains
matching policies which predicate whether a speci�c o�er
and request match, based on the order type and speci�ca-
tions. For example, matchmaking in a ride-hailing market
is often based on the geographic distance between a driver
and a passenger. Likewise, asset orders would match if the
price of an o�er is equal to or lower than the price of a re-
quest. Similar to validation policies, matching policies are
published on a website or on another public medium, and
can be downloaded by interested matchmakers.

Negotiation stores. To correctly process incoming mes-
sages from negotiation counterparties, MATCH requires
state storage of outgoing messages during order negotiation.
This state is stored in a negotiation store, coloured yellow in
Figure 4. For each negotiation, a new negotiation store is

Notation Variable Description
,<0C2⌘ Match window (�xed to 2 seconds)
,=46 Negotiation window (�xed to 5 seconds)
< Number of matchmakers
5 Order fanout
A Fraction of malicious matchmakers

Table 1. An overview of the variables used in Section 6.

created, a unique identi�er is generated, and this identi�er is
appended to each message associated with this negotiation.
Counterparties are required to include the same identi�er in
response messages. Incoming negotiation messages contain-
ing an unknown identi�er are discarded by users. Negotia-
tion stores time out after the negotiation window expires,
on which the store and its contents are deleted.

Trading mechanism. Negotiated trade agreements are
passed to the trading mechanism that executes the trade. We
consider this component external to MATCH. The trading
mechanism noti�es the overlay logic when the trade is ex-
ecuted. This noti�cation includes one or more transaction
identi�ers and a boolean value indicating whether the trade
was successful or not. We assume that the trading mecha-
nism provides atomic guarantees: either the full negotiated
match is executed or nothing is being executed. This guaran-
tee is, for example, provided by smart contracts, applications
that runs on top of a blockchain (also see Section 6.3) [33].

6 Experimental Evaluation
We implement the MATCH protocol and middleware in the
Python 3 programming language, spanning a total of 6.511
lines of source code (SLOC), without comments. The imple-
mentation uses the asyncio library for asynchronous event
processing. The network layer is implemented using our net-
working library, optimized for building peer-to-peer overlay
networks and with built-in support for Network Address
Translation (NAT) puncturing and authenticated messag-
ing.1 For e�ciency, message exchange between users and
matchmakers uses UDP. Order negotiation proceeds using
TCP since this �ow requires bilateral and reliable message
exchange. All software artifacts of MATCH (source code,
tests, and documentation) are available online.2
In Section 6.1 and 6.2, we subject the MATCH middle-

ware to two workloads for ride-hailing and asset trading,
reconstructed from real-world traces. These experiments
demonstrates that MATCH maintains high matching quality,
is resilient against malicious matchmakers, and is reusable
across di�erent trading domains. In Section 6.3, we compare
our solution to matchmaking on an Ethereum blockchain
and show that MATCH uses considerably less bandwidth
and has superior order ful�l latencies.
1See h�ps://github.com/tribler/py-ipv8
2See h�ps://github.com/Tribler/anydex-core/tree/match-middleware20

81

MATCH: A Decentralized Middleware for Fair Matchmaking Middleware ’20, December 7–11, 2020, Del�, Netherlands

●

●

●

●

●

Centralized

0.54

0.56

0.58

0.60

0.62

500 1000 1500 2000
Matchmakers

Av
g.

 m
at

ch
 d

is
ta

nc
e

(k
m

) Fanout
● 30

40
50
60

(a) Matching quality w. di�erent fanouts 5

●
●

●

●
●

0.54

0.56

0.58

0.60

0.62

500 1000 1500 2000
Matchmakers

Av
g.

 m
at

ch
 d

is
ta

nc
e

(k
m

) Malicious fraction
● 0

0.25
0.5
0.75

(b) Impact of sel�sh matching (5 = 50)

●

● ●
● ●

0.54

0.56

0.58

0.60

0.62

500 1000 1500 2000
Matchmakers

Av
g.

 m
at

ch
 d

is
ta

nc
e

(k
m

) Malicious fraction
● 0

0.25
0.5
0.75

(c) Impact of sel�sh matching (adaptive 5)

Figure 5. The matching quality and impact of sel�sh matching when executing the ride-hailing workload in MATCH, while
varying the number of matchmakers. In Figure (b) and (c), the order fanout 5 is either �xed (5 = 50) or adaptive such that
% ('A4@ \ '> 5 5 < ;) � 0.95.

All experiments are conducted on our nation-wide univer-
sity cluster, allowing us to run multiple instances of MATCH
on di�erent compute nodes [4]. It contains 48 compute nodes,
each one equipped with dual 8-core E5-2630v3 CPU and
64GB of memory, running CentOS 6. To account for network
latencies, we source a distribution from the PlanetLab la-
tency dataset and uniformly sample from it when sending
messages [59]. This also accounts for runtime variability of
latency present in real-world networks. Table 1 summarizes
the variables that are used in this section. The negotiation
window (,=46) is �xed to �ve seconds, which is well above
the highest observed round-trip time in the PlanetLab la-
tency dataset. The match window (,<0C2⌘) is �xed to two
seconds. These values should be increased when MATCH is
deployed in networks with higher link latency, since it then
can take longer for match or negotiation messages to arrive.

6.1 Ride-hailing Experiments
Unfair matchmaking in ride-hailing markets is a prominent
threat to both drivers and passengers [7, 9]. We leverage the
MATCH middleware to devise a decentralized alternative
to ride-hailing platforms like Uber and Lyft. In this market,
drivers perform matchmaking themselves. The �rst set of
experiments focuses on the matching quality and fairness of
MATCH in a ride-hailing environment. The used workload
contains temporal information about ride o�ers and requests
created by drivers and passengers, respectively. Each order
in the workload has a quantity of one, ensuring that a ride
request is matched with at most one ride o�er.

Workload speci�cation. The workload is reconstructed
from historical traces of taxi rides published by the govern-
ment of New York [51]. We analyse the traces and subtract
2’100 ride o�ers and requests during the busiest period in
2015: November 1, 00:59:57 to November 1, 01:01:16 (datasets
published after 2015 did not include geographic information

on drivers and passengers). We assume a total of 1’100 dri-
vers and 1’000 passengers, to resemble the situation where
drivers are waiting idly for passengers. First, drivers indi-
cate their willingness to transport passengers by creating
o�ers containing their waiting location, during 55 seconds
(we wait 50 milliseconds between the creation of subsequent
ride o�ers). After this period, passengers submit requests
containing their pick-up location, during almost 77 seconds.
After all passengers have submitted their request, we leave
the experiment running for an additional 60 seconds, to en-
sure that all requests are matched with an o�er. Since the
workload does not provide information on the identity of
individual passengers or drivers, it is assumed that each pas-
senger creates one request throughout the experiment. This
assumption does not lead to skewed results since a passenger
does not create multiple ride requests within short time [41].

For the this workload, we implement the matching policy
such that it minimizes the distance between passengers and
drivers, to reduce waiting times for passengers. Speci�cally,
the policy computes the geographic (haversine) distance
between the locations included in o�ers and requests. In
this market, we de�ne the matching quality as the average
distance between matched passengers and drivers, which we
also call thematch distance. This qualitymetric is also used by
related work on matchmaking in ride-hailing markets [41].

Matching quality.We �rst quantify the matching quality
of MATCH under the ride-hailing workload when increasing
the number of matchmakers for di�erent values of the order
fanout, see Figure 5a. The horizontal axis shows the number
of matchmakers (<) and the vertical axis denotes the average
match distance. For this experiment, all matchmakers act
honest and execute the same matching algorithm (in other
words, A = 0). As a baseline, we use the matching quality of
a centralized matchmaking approach where a single server
matches incoming orders in a FIFO manner (following the
model in Figure 1). This centralized approach results in an

82

Middleware ’20, December 7–11, 2020, Del�, Netherlands de Vos, et al.

average match distance of 0.544km, and is indicated with a
dashed horizontal line in the graphs of Figure 5. Figure 5a
shows that the average match distance increases when there
are more matchmakers under a �xed order fanout. Also, the
match distance increases when the order fanout decreases.
In particular, It becomes less likely that (good) matches for
o�ers and requests are found when either the number of
matchmakers increases or the order fanout decreases. The
match distance increases signi�cantly when 5 = 30 and<
increases. E.g., for< = 20000, the average match distance
increases to 0.607km, 9.5% higher compared to the baseline.

Remarkably, for lower values of 5 and<, MATCH outper-
forms the performance of centralized matchmaking, in terms
of matching quality. We explain this behaviour as follows.
With our ride-hailing workload, centralized matchmaking
can immediately match a ride request with a ride o�er. The
overall match quality, however, might be improved when
batching incoming ride requests, since it could have been
better to assign an already-matched driver to a passenger
that created its request later during the experiment. Call mar-
kets, for example, operate in batches, where incoming orders
are �rst aggregated over time and then matched at predeter-
mined time intervals. In MATCH, users aggregate potential
matches during the match window,,<0C2⌘ , resembling this
behaviour. Therefore, the matching quality in MATCH can
exceed that of centralized FIFO matchmaking because of
match aggregation by users, at the cost of a larger order
ful�l time.

Impact of sel�sh matching. We show how sel�sh be-
haviour of malicious matchmakers impacts the matching
quality. We model a malicious matchmaker as a driver that
matches an incoming ride request from a passenger with its
own service o�er �rst. This captures the economic incentive
of drivers to prioritize their own ride services.

Figure 5b shows the average match distance under a �xed
order fanout (5 = 50) when increasing the number of match-
makers. We vary A , up to 75% of all matchmakers (A = 0.75).
Figure 5b shows that increasing both< and A has a negative
impact on the matching quality in MATCH. The problem is
that a malicious matchmaker matches the requests of passen-
gers with its own o�er, while it likely would have established
a better match if the matchmaker would have been honest.
Therefore, we also consider an adaptive order fanout, based
on the values of both A and<. Speci�cally, 5 is �xed to the
lowest integer value such that % ('A4@\'> 5 5 < ;) � 0.95. Fig-
ure 5c visualizes these results with an adaptive order fanout.
The order fanout is 63 with< = 20000 and A = 0. Formula 2
describes that when 50% of the matchmakers prioritize their
own ride o�er (A = 0.5), the order fanout increases to 78.
Figure 5c shows that the average match distance remains
largely the same, even when increasing the total number of
matchmakers. These results show that in a network with
2’000 matchmakers, by increasing the order fanout by only
15, MATCH can tolerate with 50% of all matchmakers acting

maliciously and still produce a matching quality that is on
par with the situation where all matchmakers are honest.
In practice, the exact value of A is not known a-priori and
MATCH developers should therefore �x the order fanout to
account for an upper bound for the malicious fraction (e.g.,
many BFT consensus algorithms tolerate up to A = 1

3 [12]).

6.2 Asset Trading Experiments
We now evaluate MATCH in an asset trading domain. Driven
by the popularity of blockchain-based assets, major peer-
to-peer markets have emerged to facilitate cryptocurrency
exchange between traders [6]. MATCH enables traders to
perform matchmaking of orders themselves in a fair manner,
without entrusting their orders to a market operator. Unlike
our previous experiments, the workload used in our upcom-
ing experiments involves o�ers and requests that be partially
ful�lled and are commonly cancelled. We conduct the same
matching quality and fairness experiments described in Sec-
tion 6.1 with an asset trading workload.
To the best of our knowledge, there is no standardized

de�nition for the matching quality of orders with partial
ful�lment. Therefore, after each experiment with the asset
trading workload, we determine the matching quality as fol-
lows: all orders that are not cancelled or ful�lled are added
to a single order book, starting with the �rst order created.
When adding these orders to the order book, we sum the
number of matches returned by the matching engine, which
yields our matching quality. Intuitively, this de�nition indi-
cates how many additional matches a central matchmaker
would have found if it had knowledge of all open orders. By
de�nition, the matching quality of centralized matchmaking
is zero and therefore optimal with FIFO order matching. In
the worst case, our middleware would have missed 6’450
matches, which is the situation where no matchmaker per-
forms any matching. When running the asset trading work-
load, the matching engine matches orders according to the
price-time matching policy [35].

Workload speci�cation. The asset trading workload
contains buy and sell orders that have been published on the
blockchain ledger of BitShares [46]. BitShares is a blockchain-
based decentralized exchange where users can create, issue
and trade digital assets. New orders are submitted to dedi-
cated validator nodes, which include incoming orders in a
block on the blockchain. We have analysed the entire Bit-
Shares blockchain since its inception and extracted all buy
and sell orders, and order cancellations. To generate load on
our system, we determined when most orders were created
for �ve minutes. The result is a workload with 942 order
cancellations, 12’253 o�ers and 3’342 requests involving 121
unique asset types. On average, traders create 52 new orders
every second. Since our dataset does not contain temporal
information on order creation and cancellation, we assume
that each order is uniformly created in the time interval be-
tween the last block and the block that contains this speci�c

83

MATCH: A Decentralized Middleware for Fair Matchmaking Middleware ’20, December 7–11, 2020, Del�, Netherlands

●

●

● ●
●

0

10

20

30

500 1000 1500 2000
Matchmakers

M
is

se
d

m
at

ch
es

Fanout
● 30

40
50
60

(a) Matching quality w. di�erent fanouts 5

●
● ●

● ●

0

10

20

30

500 1000 1500 2000
Matchmakers

M
is

se
d

m
at

ch
es

Malicious fraction
● 0

0.25
0.5
0.75

(b) Impact of sel�sh matching (5 = 50)

●
●

●

●
●

0

10

20

30

500 1000 1500 2000
Matchmakers

M
is

se
d

m
at

ch
es

Malicious fraction
● 0

0.25
0.5
0.75

(c) Impact of sel�sh matching (adaptive 5)

Figure 6. The matching quality and impact of sel�sh matching when executing the ride-hailing workload in MATCH, while
varying the number of matchmakers. In Figure (b) and (c), the order fanout 5 is either �xed (5 = 50) or adaptive such that
% ('A4@ \ '> 5 5 < ;) � 0.95.

order. We believe this approximates the actual creation times-
tamp of the order and that this does not skew the experiment
results. Again, there is a 60 seconds experiment cooldown
period after the creation of the last order.

Matching quality. Figure 6a shows the matching quality
while varying the number of matchmakers and order fanout.
By de�nition, a centralized approach to matchmaking would
not miss any match. Similar to the matching quality experi-
ment with the ride-hailing workload (see Figure 5a), match-
ing quality decreases when there are more matchmakers
and the order fanout is static. It particularly interesting to
observe how even a relative low order fanout of 30 results
in less than ten missed matches on average (only 0.61% of
the maximum number of missed matches). Further analysis
of the workload reveals that various users create multiple
orders for the same asset pair within short time. Therefore,
matchmessages for such orders received are inserted in mul-
tiple match queues, and thus re-used. Users creating multiple
smaller orders with similar speci�cations are reaching more
matchmakers and can potentially negotiate better matches.

Impact of sel�sh matching. We demonstrate the e�ect
of malicious matchmakers on the matching quality in our
asset trading workload, both with a �xed and adaptive or-
der fanout. Under the asset trading workload, we model a
malicious matchmaker as a node that purposefully does not
inform the party behind an incoming order about the match
with the best price. Essentially, a malicious matchmaker
“hides” order book entries from the order creator.

Figure 6b shows the number of missed matches with 5 =
50 when increasing< and varying the A . More matchmakers
negatively impacts the matching quality, although its e�ect
is relatively minor. In particular, even with A = 0.5 and
< = 20000, MATCH only misses less than ten matches on
average. We repeat the experiment while adapting the order
fanout such that % ('A4@ \ '> 5 5 < ;) � 0.95, see Figure 6c. It

shows that for all settings, MATCH only misses under ten
matches on average.

6.3 Comparison with On-chain Matchmaking
We compare the bandwidth usage and order ful�l laten-
cies of MATCH with that of matchmaking on an Ethereum
blockchain, using both the ride-hailing and asset trading
workloads. Ethereum is the most mature blockchain plat-
form that enables the execution of generic-purpose smart
contracts, and is the most used platform to deploy smart
contracts in general [58].
We setup a private Ethereum network consisting of 400

instances running geth, an Ethereum client written in Go.3
Ethereum uses a Proof-of-Work consensus mechanism in
which participants, also called miners, compete to include
transactions on the blockchain. Speci�cally, each miner con-
tinuously solves an algorithmic puzzle and the �rst miner to
�nd a valid solution to the puzzle, can extend the blockchain
with one block with transactions. We �x geth such that each
instance mines on at most one CPU core. We �x the gas limit
(indicating the maximum amount of computation that can
be done within a block) to 10’000’000, in line with the public
Ethereum network. To accurately compare the performance
ofMATCH and Ethereum, we run bothworkloads inMATCH
with 400 instances, and adjust our workload accordingly. We
�x< = 400, 5 = 30 and A = 0. Since a smart contract enforces
the correct execution of a particular matching policy, we run
MATCH with 400 honest matchmakers.

Smart contracts. For both workloads, we implement a
smart contract in the Solidity programming language. The
smart contract for the ride-hailing workload maintains two
lists containing open o�ers and requests. Submission of a
new ride o�er and request is done by issuing a transaction
with geographic information that invokes the ride_offer

3See h�ps://github.com/ethereum/go-ethereum

84

Middleware ’20, December 7–11, 2020, Del�, Netherlands de Vos, et al.

0.02

13.28

0.04

20.08

0

5

10

15

20

25

Asset trading Ride−hailing
Workload

To
ta

l b
an

dw
id

th
 u

sa
ge

 (G
B) System

Ethereum
MATCH

(a) Total bandwidth usage

●●●
●
●●●●●●●●●●
●
●●●●
●
●●●●●●●●● ●●0

100

200

300

400

500

Asset trading Ride−hailing
Workload

O
rd

er
 fu

lfi
l l

at
en

cy
 (s

.) System
Ethereum
MATCH

(b) Order ful�l latency

Figure 7. The total bandwidth usage and the distribution of
order ful�l latencies of on-chain matchmaking on Ethereum
and in MATCH, under the ride-hailing and asset trading
workloads.

and ride_request methods in the smart contract, respec-
tively. Invocation of these methods triggers a loop through
the list of active o�ers or request, and �nds the matching
order that minimizes the distance between the passenger
and driver. The algorithmic complexity when matching a
single o�er and request is $ (=) where = is the number of
open requests and o�ers, respectively. To avoid computation-
ally expensive trigonometry operations when computing the
Haversine distance, latitude and longitude coordinates are
projected to Universal Transverse Mercator (UTM) coordi-
nates and the Manhattan distance is used as a norm in the
smart contract. This results in an accuracy loss of only 0.35%.

For the asset trading workload, we adopt an existing and
deployed order book implementation.4 This smart contract
implements a market to trade digital tokens that reside on
the Ethereum blockchain. Orders are bundled in a limit order
book and organized in distinct price levels. This allows for
a strategic search for order matches and avoids the need
for a full linear scan through all o�ers and requests. This
order book organization is predominantly used by �nancial
exchanges. To quantify the overhead of order matchmaking,
we remove the operation that transfers token ownership after
matching from the smart contract but leave the implemented
price-time matchmaking logic intact.

Bandwidth usage. We measure the aggregated band-
width usage of all instance of MATCH and Ethereum, see
Figure 7a. Ethereum requires over 20GB of network tra�c
for the ride-hailing workload. In comparison, MATCH uses
dramatically less bandwidth compared to Ethereum-based
matchmaking. MATCH only requires 41.6MB of aggregate
network tra�c under the ride-haling workload, and 20.7MB
under the asset trading workload. The high bandwidth usage
of Ethereum is a direct consequence of the full replication of
state. Speci�cally, each transaction and block is disseminated
to all active Ethereum instances, resulting in a signi�cant
amount of network tra�c.
4See h�ps://github.com/makerdao/maker-otc/tree/master/src

Order ful�l latencies. In Figure 7b, we show the time
it takes to complete orders in MATCH and Ethereum, for
both workloads. Speci�cally, this is the time between order
creation and order ful�lment. For the ride-hailing workload,
we only consider the completion time of requests made by
passengers, since drivers are waiting for incoming requests.
Figure 7b shows that the average order completion time of
MATCH under the ride-hailing workload is 2.46 seconds and
increases under the asset trading workload to 5.02 seconds.
Since users aggregate matchmessages during the match win-
dow, the order ful�l latency in MATCH is at least,<0C2⌘

(which is �xed to two seconds in our experiments). In compar-
ison, the average order ful�l latency in Ethereum is 258.2 and
53.6 seconds under the ride-hailing and asset trading work-
load, respectively. We argue that in a ride-hailing market,
the latencies experienced when performing matchmaking
on an Ethereum blockchain would be unacceptable for both
passengers and drivers.

Ethereum transactionpool.To further analyse the large
di�erences in order ful�l latencies between MATCH and
Ethereum, we visualize the size of the Ethereum transaction
pool (as maintained by a single Ethereum instance) during
the experiment in Figure 8. This �gure shows the time into
the experiment on the horizontal axis and the number of
transactions in the pool on the vertical axis. The transac-
tion pool contains transactions that are not yet included in
a block on the blockchain by a miner. Note how Ethereum
becomes congested under the asset trading workload quickly
after starting the experiment. Around 70 seconds into the
asset trading experiment, the transaction pool contains 1’713
uncon�rmed transactions that are buying or selling assets.
285 seconds after the start of this experiments, all orders are
included in a block on the Ethereum blockchain.
The ride hailing experiment starts by drivers submitting

ride o�ers to Ethereum instances. All ride o�ers are included
on the Ethereum blockchain after 58 seconds into the exper-
iment. Passengers start to submit ride requests 100 seconds
into the experiment. Similar to the asset trading workload,
the size increase of the Ethereum transaction pool shows that

0

500

1000

1500

0 100 200 300 400 500 600
Time into the experiment (s.)

Tr
an

sa
ct

io
n

po
ol

 s
ize Workload

Asset trading
Ride−hailing

Figure 8. The size of the transaction pool during our
Ethereum experiments, under the ride-hailing and asset trad-
ing workloads.

85

MATCH: A Decentralized Middleware for Fair Matchmaking Middleware ’20, December 7–11, 2020, Del�, Netherlands

the blockchain is unable to handle the load of incoming trans-
action, causing congestion. 180 seconds into the experiment,
the number of uncon�rmed transactions decreases. Further
inspection of the blockchain reveals that only around ten
transactions with a ride request are included in each block.
We explain this behaviour as follows. In Ethereum, the sum
of gas usage of all transactions in a block cannot exceed
10’000’000 gas. The gas cost of matching ride requests scales
with the number of open ride o�ers and decreases during
the experiment since there are less o�ers to compare with.
Note how after 500 seconds into the ride-hailing experiment,
the number of uncon�rmed transactions decreases quickly.

7 Related Work
Matchmaking (or brokering) is a core concept in publish/-
subscribe (Pub/Sub) architectures. In centralized Pub/Sub
architectures, a single server brokers incoming messages
between publishers and subscribers [10]. Decentralized ap-
proaches either �ood events through the entire network, or
route these events based on their topic or content [5, 11]. In
contrast to Pub/Sub systems, MATCH does not ensure that
events (orders) are eventually delivered to all subscribers
(matchmakers).

Resource allocation, the assignment of compute resources
to incoming jobs, also requires matchmaking [15]. Most work
on resource allocation aims to �nd an optimal assignment
between resources and jobs, whereas our work focuses on
establishing any match [32]. In this context, we identify two
matchmaking approaches described in literature. The �rst
approach is to use market mechanisms that coordinate the
matchmaking process, e.g., by a continuous double auction
mechanism [8, 26, 38]. Market-based matching approaches
increase allocation e�ciency but compromise on computa-
tional e�ciency since it requires synchronization mecha-
nisms. The second approach to matchmaking is to deploy
one or more dedicated (centralized) brokers [19, 22, 43].
Motivated by the scalability and load balancing issues of

centralized matchmaking, various researchers explored the
usage of multiple, independent matchmakers [1, 2, 20, 48].
Matchmakers usually operate within their own administra-
tive domain, acting as a broker for a speci�c set of nodes. The
work of Shafran et al. evaluates a distributed matchmaking
model where orders are cached by intermediate agents [47].
Their work, however, only considers one-to-one matching.

With the proliferation of blockchain-based tokens, there
have been various proposals for matchmaking architectures
that complement decentralized exchanges. These architec-
tures aim to avoid transaction fees and expensive on-chain
matchmaking by relying on an o�-chain order matching
service, and on-chain order execution. IDEX, an Ethereum-
based decentralized exchange, uses a centralized server for
order matchmaking [31]. In AirSwap, indexers mediate trade
between makers, nodes who create an order, and takers,

who ful�l existing orders [37]. In contrast to MATCH, a
user can only send a new order to a single AirSwap indexer.
The 0x protocol uses a similar matchmaking approach since
traders send a new order to exactly one matchmaker [57].
The Loopring protocol is similar to the decentralized match-
ing model of MATCH since traders submit orders to one
or more relay nodes [56]. The protocol description, how-
ever, lacks details on the dissemination strategy of orders to
matchmakers.

Auctions are related to order matchmaking since they also
provide a mechanism to allocate resources from sellers to
buyers. PeerMart is a decentralized auction mechanism that
uses sets of distributed brokers [28]. There have been various
proposals to run Ethereum-based auctions while preserv-
ing the privacy of bidders [23, 24]. Yet, auctions and order
matchmaking are di�erent economic primitives with di�er-
ing goals. In contrast to order matchmaking, timeframes
(and time limitations) are critical in auctions. Furthermore,
auctions have higher security requirements and need (time-
bounded) coordination amongst participants, e.g., to deter-
mine the winning bidder.

8 Conclusions
We have presented MATCH, a decentralized middleware
for fair matchmaking in peer-to-peer markets. Our work
addresses fairness concerns associated with the use of in-
house, proprietary solutions controlled by a market operator.
In the MATCH protocol, users send new orders to a small,
random subset of matchmakers, which inform users about
potential matches. Users then engage in peer-to-peer negoti-
ation about matches with other users. This approach makes
MATCH resilient against matchmakers who deviate from a
standard matching policy. We have devised the MATCHmid-
dleware architecture, suitable for deployment in aWAN envi-
ronment. We have experimentally proven resistance against
malicious matchmakers in a ride-hailing and asset trading
domain, showing that MATCH still establishes high-quality
matches. Our comparison experiments have showed that the
resource usage of MATCH is considerably lower compared
to that of matchmaking on an Ethereum blockchain.

References
[1] Tariq Abdullah et al. 2010. E�ect of the degree of neighborhood on

resource discovery in ad hoc grids. In International Conference on
Architecture of Computing Systems. Springer, 174–186.

[2] Abdulrahman A Azab et al. 2008. An adaptive decentralized schedul-
ing mechanism for peer-to-peer desktop grids. In 2008 International
Conference on Computer Engineering & Systems. IEEE, 364–371.

[3] Eduardo M. Azevedo and E. Glen Weyl. 2016. Matching markets in
the digital age. Science 352, 6289 (2016), 1056–1057.

[4] Henri Bal, Dick Epema, Cees de Laat, Rob van Nieuwpoort, John
Romein, Frank Seinstra, Cees Snoek, and Harry Wijsho�. 2016. A
medium-scale distributed system for computer science research: In-
frastructure for the long term. Computer 49, 5 (2016), 54–63.

[5] Guruduth Banavar et al. 1999. An e�cient multicast protocol for
content-based publish-subscribe systems. In Proceedings. 19th IEEE

86

Middleware ’20, December 7–11, 2020, Del�, Netherlands de Vos, et al.

International Conference on Distributed Computing Systems (Cat. No.
99CB37003). IEEE, 262–272.

[6] Iddo Bentov et al. 2019. Tesseract: Real-time cryptocurrency exchange
using trusted hardware. In Proceedings of the 2019 ACM SIGSAC Con-
ference on Computer and Communications Security. 1521–1538.

[7] Eszter Bokányi and Anikó Hannák. 2020. Understanding Inequalities
in Ride-Hailing Services Through Simulations. Scienti�c Reports 10, 1
(Dec. 2020), 6500. h�ps://doi.org/10.1038/s41598-020-63171-9

[8] Rajkumar Buyya et al. 2002. Economic models for resource manage-
ment and scheduling inGrid computing. Concurrency and Computation:
Practice and Experience 14 (2002), 1507–1542.

[9] Ryan Calo and Alex Rosenblat. 2017. The taking economy: Uber,
information, and power. Colum. L. Rev. 117 (2017), 1623.

[10] Antonio Carzaniga et al. 2001. Design and evaluation of a wide-area
event noti�cation service. ACM Trans. Comput. Syst. 19 (2001), 332–
383.

[11] Antonio Carzaniga et al. 2004. A routing scheme for content-based
networking. In IEEE INFOCOM 2004, Vol. 2. IEEE, 918–928.

[12] Miguel Castro, Barbara Liskov, et al. 1999. Practical Byzantine fault
tolerance. In OSDI, Vol. 99. 173–186.

[13] Yatin Chawathe et al. 2003. Making gnutella-like p2p systems scal-
able. In Proceedings of the 2003 conference on Applications, technologies,
architectures, and protocols for computer communications. 407–418.

[14] Pepper D. Culpepper and Kathleen Thelen. 2020. Are We All Amazon
Primed? Consumers and the Politics of Platform Power. Comparative
Political Studies 53, 2 (2020), 288–318.

[15] Karl Czajkowski et al. 1998. A resource management architecture for
metacomputing systems. In JSSPP. Springer, 62–82.

[16] Philip Daian et al. 2019. Flash Boys 2.0: Frontrunning, Transaction
Reordering, and Consensus Instability in Decentralized Exchanges.
arXiv e-prints (2019). arXiv:1904.05234

[17] Ernesto Damiani, S De Capitani Di Vimercati, and Pierangela Samarati.
2003. Managing multiple and dependable identities. IEEE Internet
Computing 7, 6 (2003), 29–37.

[18] John R Douceur. 2002. The sybil attack. In International workshop on
peer-to-peer systems. Springer, 251–260.

[19] B Pour Ebrahimi, K Bertels, S Vassiliadis, and K Sigdel. 2004. Match-
making within multi-agent systems. Proceeding of ProRisc-2004 (2004).

[20] Janick Edinger et al. 2016. Decentralized scheduling for tasklets. In
Proceedings of the Posters and Demos Session of the 17th International
Middleware Conference. 7–8.

[21] Shayan Eskandari et al. 2019. SoK: Transparent Dishonesty: front-
running attacks on Blockchain. CoRR abs/1902.05164 (2019).

[22] James Frey et al. 2002. Condor-G: A computation management agent
for multi-institutional grids. Cluster Computing 5, 3 (2002), 237–246.

[23] Hisham S Galal and Amr M Youssef. 2018. Succinctly veri�able sealed-
bid auction smart contract. In Data Privacy Management, Cryptocur-
rencies and Blockchain Technology. Springer, 3–19.

[24] Hisham S Galal and AmrM Youssef. 2018. Veri�able sealed-bid auction
on the ethereum blockchain. In International Conference on Financial
Cryptography and Data Security. Springer, 265–278.

[25] Arthur Gervais, Ghassan O Karame, Karl Wüst, Vasileios Glykantzis,
Hubert Ritzdorf, and Srdjan Capkun. 2016. On the security and perfor-
mance of proof of work blockchains. In Proceedings of the 2016 ACM
SIGSAC conference on computer and communications security. 3–16.

[26] Jacek Gomoluch et al. 2003. Market-based Resource Allocation for
Grid Computing: A Model and Simulation.. In Middleware. 211–218.

[27] Aniko Hannak et al. 2014. Measuring Price Discrimination and Steer-
ing on E-Commerce Web Sites. In ICM. 305–318.

[28] D Haussheer and Burkhard Stiller. 2005. Decentralized auction-based
pricing with peermart. In 2005 9th IFIP/IEEE International Symposium
on Integrated Network Management, 2005. IM 2005. IEEE, 381–394.

[29] Aljosha Judmayer et al. 2019. Pay-To-Win: Incentive Attacks on Proof-
of-Work Cryptocurrencies. IACR 2019 (2019), 775.

[30] Aashish Kolluri et al. 2018. Exploiting The Laws of Order in Smart
Contracts. CoRR abs/1810.11605 (2018).

[31] Aurora Labs. 2018. Aurora: A Decentralized Financial Institution
Utilizing Distributed Computing and the Ethereum Network.

[32] Simone A Ludwig et al. 2012. Matchmaking in multi-attribute auctions
using a genetic algorithm and a particle swarm approach. In New
Trends in Agent-Based Complex Automated Negotiations. 81–98.

[33] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas
Hobor. 2016. Making smart contracts smarter. In Proceedings of the
2016 ACM SIGSAC conference on computer and communications security.
254–269.

[34] Arvind Malhotra and Marshall Van Alstyne. 2014. The dark side of
the sharing economy. . . and how to lighten it. Commun. ACM 57, 11
(2014), 24–27.

[35] Vasilios Mavroudis and Hayden Melton. 2019. Libra: Fair order-
matching for electronic �nancial exchanges. In Proceedings of the 1st
ACM Conference on Advances in Financial Technologies. 156–168.

[36] Petar Maymounkov and David Mazieres. 2002. Kademlia: A peer-
to-peer information system based on the xor metric. In International
Workshop on Peer-to-Peer Systems. Springer, 53–65.

[37] Oved Michael and Mosites Don. 2017. Swap: A Peer-to-Peer Protocol
for Trading Ethereum Tokens. h�ps://swap.tech/whitepaper/

[38] Marian Mihailescu and Yong Meng Teo. 2010. A distributed market
framework for large-scale resource sharing. In European Conference
on Parallel Processing. Springer, 418–430.

[39] Alexander Mühle, Andreas Grüner, Tatiana Gayvoronskaya, and
Christoph Meinel. 2018. A survey on essential components of a self-
sovereign identity. Computer Science Review 30 (2018), 80–86.

[40] OECD. 2019. An Introduction to Online Platforms and Their Role in the
Digital Transformation. 216 pages. h�ps://doi.org/10.1787/53e5f593-en

[41] Anh Pham et al. 2017. Oride: A privacy-preserving yet accountable
ride-hailing service. In USENIX Security. 1235–1252.

[42] PWC. 2015. Consumer Intelligence Series: The Sharing Economy. Tech-
nical Report.

[43] Rajesh Raman et al. 1998. Matchmaking: Distributed resource man-
agement for high throughput computing. In Proceedings of The 7th
International Symposium on High Performance Distributed Computing.
IEEE, 140–146.

[44] Juliet Schor et al. 2016. Debating the sharing economy. Journal of
Self-Governance and Management Economics 4, 3 (2016), 7–22.

[45] Zvi Schreiber. 2020. k-Root-n: An E�cient Algorithm for Avoiding
Short Term Double-Spending Alongside Distributed Ledger Technolo-
gies such as Blockchain. Information 11, 2 (2020), 90.

[46] Fabian Schuh and Daniel Larimer. 2017. Bitshares 2.0: general overview.
h�p://docs.bitshares.org/downloads/bitshares-general.pdf

[47] Victor Shafran et al. 2008. Towards bidirectional distributed match-
making. In Proceedings of the 7th international joint conference on Au-
tonomous agents and multiagent systems-Volume 3. International Foun-
dation for Autonomous Agents and Multiagent Systems, 1437–1440.

[48] K Sigdel et al. 2005. A framework for adaptive matchmaking in dis-
tributed computing. In In proceeding of GRID Workshop, Vol. 224.

[49] Quinten Stokkink, Dick Epema, and Johan Pouwelse. 2020. A Truly
Self-Sovereign Identity System. arXiv preprint arXiv:2007.00415 (2020).

[50] Hemang Subramanian. 2017. Decentralized blockchain-based elec-
tronic marketplaces. Commun. ACM 61, 1 (2017), 78–84.

[51] N TLC. 2017. Nyc taxi and limousine commission (tlc) trip record
data.

[52] David Trastour et al. 2002. Semantic web support for the business-to-
business e-commerce lifecycle. In Proceedings of the 11th international
conference on World Wide Web. 89–98.

[53] Daniel J Veit. 2003. Matchmaking in electronic markets: An agent-based
approach towards matchmaking in electronic negotiations. Vol. 2882.
Springer.

87

MATCH: A Decentralized Middleware for Fair Matchmaking Middleware ’20, December 7–11, 2020, Del�, Netherlands

[54] Daniel J Veit et al. 2002. Multi-dimensional matchmaking for electronic
markets. Applied Arti�cial Intelligence 16, 9-10 (2002), 853–869.

[55] Marko Vukolić. 2015. The quest for scalable blockchain fabric: Proof-of-
work vs. BFT replication. In International Workshop on Open Problems
in Network Security. Springer, 112–125.

[56] DanielWang et al. 2018. Loopring: A decentralized token exchange pro-
tocol. (2018). h�ps://github.com/Loopring/whitepaper/blob/master/
en_whitepaper.pdf

[57] Will Warren and Amir Bandeali. 2017. 0x: An open protocol for decen-
tralized exchange on the Ethereum blockchain. h�ps://github.com/
0xProject/whitepaper

[58] Gavin Wood et al. 2014. Ethereum: A secure decentralised generalised
transaction ledger. Ethereum project yellow paper 151, 2014 (2014),
1–32.

[59] Rui Zhu et al. 2016. Network latency estimation for personal devices:
A matrix completion approach. IEEE/ACM Transactions on Networking
25, 2 (2016), 724–737.

88

