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A B S T R A C T

‘‘Big Tech’’ companies provide digital services used by billions of people. Recent developments, however,
have shown that these companies often abuse their unprecedented market dominance for selfish interests.
Meanwhile, decentralized applications without central authority are gaining traction. Decentralized applica-
tions critically depend on its users working together. Ensuring that users do not consume too many resources
without reciprocating is a crucial requirement for the sustainability of such applications.

We present ConTrib, a universal mechanism to maintain fairness in decentralized applications by account-
ing the work performed by peers. In ConTrib, participants maintain a personal ledger with tamper-evident
records. A record describes some work performed by a peer and links to other records. Fraud in ConTrib
occurs when a peer illegitimately modifies one of the records in its personal ledger. This is detected through
the continuous exchange of random records between peers and by verifying the consistency of incoming records
against known ones. Our simple fraud detection algorithm is highly scalable, tolerates significant packet loss,
and exhibits relatively low fraud detection times. We experimentally show that fraud is detected within seconds
and with low bandwidth requirements. To demonstrate the applicability of our work, we deploy ConTrib in the
Tribler file-sharing application and successfully address free-riding behaviour. This two-year trial has resulted
in over 160 million records, created by more than 94’000 users.
1. Introduction

Over the last decades, “Big Tech” companies have obtained an
unprecedented market dominance in the industry for information tech-
nology [1]. Companies such as Google, Amazon, Facebook, and Apple
are omnipresent in our current society and even have the means of
acting as small states, inhabited by billions of users worldwide. By con-
tinuously broadening their activities, these companies seek to expand
their virtual territory and seek to obtain monopolistic control over the
enabling elements for digital services, such as access to the Internet [2].

The societal impact of “Big Tech” companies is a double-edged
sword. On the one hand, these companies are facilitating new modes
of digital interaction between users and enable new business models.
The sharing economy is a prime example of this phenomena. It is made
up by digital markets for the trustworthy exchange of personal assets
(e.g., houses and cars) between strangers [3]. Sharing personal assets
is a concept that has long been confined to trusted individuals, such
as family and friends [4]. Likewise, media platforms such as YouTube
provide the required infrastructure for new forms of user engagement
through video weblogging or “vlogging”.
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On the other hand, it has become apparent that “Big Tech” com-
panies tend to exploit their established market position and are in-
creasingly involved in regulatory or political battles. This behaviour
sometimes goes undetected for years. For example, researchers have
only recently demonstrated that Uber actively manipulates the match-
making process between passengers and drivers for commercial in-
terests, therefore decreasing platform fairness and income equality of
drivers [5]. Similarly, Apple is currently under antitrust investigation
by the European Commission that is assessing whether Apples’ rules
for developers on the distribution of apps via the App Store violate
competition rules [6].

These concerning developments have contributed to an increase
in the deployment of decentralized applications. Decentralized appli-
cations avoid centralized ownership and delegate the decision making
away from a single authority. A decentralized application mainly oper-
ates through the direct cooperation and information exchange between
users, which we call peers. Arguably, Bitcoin is the most influential solu-
tion in this direction and provides a decentralized cash system without
the supervision by an authoritative bank [7]. The underlying data struc-
ture of Bitcoin, a blockchain, is at the core of numerous decentralized
vailable online 5 April 2021
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Fig. 1. Addressing fairness issues in decentralized networks through work accounting, reputation and resource allocation. This work introduces a lightweight mechanism for secure
work accounting.
applications [8]. At the time of writing, there are thousands of decen-
tralized applications deployed on the Ethereum blockchain alone [9].
These decentralized applications include marketplaces, auctions, voting
systems, lotteries, and games.

In contrast to the applications deployed by “Big Tech” companies,
decentralized applications are fully maintained by peers, without co-
ordination by a third party. Decentralized applications require peers
to pool their computer resources to provide the desired services to
participants. Specifically, peers have to communicate with other peers,
have to dedicate computational power to process incoming network
messages, and frequently have to store data generated by other peers.
Some decentralized applications critically depend on the voluntary con-
tribution of computer resources by peers. Bitcoin, for example, prevents
the uncontrolled minting of digital coins through a resource-based con-
sensus mechanism executed by miners [7]. These miners continuously
attempt to solve a computational puzzle, a resource-intensive task that
decides who can append transactions to the blockchain ledger. Another
volunteer-based application is Tor, providing anonymity by routing
Internet traffic through user-operated relay and exit nodes [10].

Unfortunately, long-term cooperation between peers in decentral-
ized applications is non-trivial to achieve. Not rewarding peers for
performing work can result in an unfair situation where peers enjoy
the services provided by others, without contributing computer re-
sources in return. This detrimental behaviour, also called free-riding,
can degrade network health in the long term, as dedicated peers will
ultimately leave [11]. Measurements have shown that free-riding often
prevails in cooperative applications such as BitTorrent and Tor [12].
Since the cooperation between peers is at the heart of decentralized
technology, we argue that this form of fairness is a crucial require-
ment for any decentralized application to ensure long-term sustain-
ability [13]. With the renewed interest in decentralized alternatives
for “Big Tech”, ensuring fairness in decentralized applications is a
significant challenge.

A promising approach to address these fairness issues is by de-
loying a decentralized reputation mechanism, and allocate resource
ased on trust scores of individuals. This process is visualized in Fig. 1.
irst, users account all performed and consumed work in the network
ithin records. A reputation mechanism then computes trustworthiness

cores of users, based on created records. A user decides who to help
ased on a resource management algorithm. In general, users with
ow reputation scores should be refused services whereas trusted users
njoy preferential treatment from others. There currently is no account-
ng mechanism that is specifically built to account work performed
nd consumed by peers in decentralized networks, to the best of our
nowledge.
Our solution. We specifically focus on the accounting of work

performed by peers, which is crucial to ensure fairness within decen-
tralized applications. In this work, we design, implement and evaluate a
universal data store, named ConTrib. ConTrib is capable of accounting
work within decentralized applications that rely on the work performed
by participating peers. Examples of work include storing files on behalf
of other peers, performing computations, or relaying network packets.
With ConTrib, each peer maintains a personal ledger with tamper-
vident records. The ConTrib records can then be used by an application
o determine the trustworthiness of individuals, e.g., with a reputation
lgorithm. Consequently, users have a natural incentive to increase
heir social standing by modifying or removing records. This misbe-
aviour is a key threat to the integrity of the ConTrib data structure.
2

Fig. 2. Decentralized applications can use ConTrib to account the work performed by
peers within tamper-evident records. These records are used by connected applications
to detect free-riders and fraudsters, which are added to a local blacklist. Applications
can then choose to refuse services to the peers on the blacklist.

We refer to the illegitimate modification of a record as fraud. To detect
fraud, peers continuously request random records from other peers and
disseminate newly created records in the network. Peers verify the
consistency of incoming records with the ones stored in their database.

ConTrib enables connected applications to select which work should
be accounted. Fig. 2 shows how a decentralized application can lever-
age ConTrib to account work. By inspecting the records in personal
ledgers, an application can gather evidence of free-riding behaviour.
Each application maintains a local blacklist with both free-riders and
peers that have committed fraud. Peers refrain from performing work
for peers on the blacklist. ConTrib can be deployed to alleviate fairness
concerns in work-based decentralized applications, which include peer-
assisted video distribution, anonymous communication networks, and
distributed learning environments.

We implement ConTrib and evaluate how different parameters im-
pact the efficiency of fraud detection and the network usage. We find
that fraud can be detected within seconds on average, even in larger
networks with 10’000 peers where every peer commits fraud, and under
a conservative strategy for record exchange. We also show that ConTrib
highly tolerates packet loss.

To show the effectiveness of ConTrib in a realistic environment, we
employ our accounting mechanism to address free-riding behaviour in
Tribler. Tribler is a decentralized application downloaded by over 1.7
million users [14]. We specifically use ConTrib to account bandwidth
exchanges in Triblers’ Tor-like overlay and use the accounted work
to refuse services to free-riders. Our two-year measurements have
resulted in over 160 million records, created by more than 94’000 users.
This large-scale deployment trial is a key milestone in our ongoing
research effort to solve the tragedy-of-the-commons within Internet
communities [15].

The main contribution of this work is four-fold:

1. ConTrib, a universal mechanism that maintains fairness in decen-
tralized applications by accounting work (Section 3).

2. An efficient fraud detection mechanism to detect the illegitimate
tampering of created records in ConTrib (Section 4).

3. An implementation and evaluation of ConTrib with up to 10’000
peers, demonstrating the scalability of our mechanism and show-
ing that fraud can be detected within seconds on average (Sec-
tions 5 and 6).

4. A two-year deployment trial of ConTrib in Tribler, involving
94’000 Internet-recruited volunteers. This trial successfully ad-
dresses free-riding behaviour in Tribler (Section 7).
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2. Background and problem description

This work addresses fairness issues in decentralized applications,
in particularly free-riding behaviour. Many decentralized applications
integrate a mechanism to reward peers for performing work [16].
We first outline two incentive mechanisms that address free-riding by
peers, namely trade-based and trust-based incentives [17].

2.1. Trade-based incentives

With trade-based incentives, performed work by peers is remuner-
ated using a credit or payment system. Peers that use the services of
other peers are required to pay for that service. Remuneration either
occurs immediately after the work is performed or when a certain
number of payments is outstanding. The accrued credits can either
be converted to real-world money or are merely useful to show the
dedication of a particular peer. BOINC is a well-known volunteer
computing project that rewards users with virtual credits for processing
scientific workloads [18].

Blockchain technology also relies on financial remuneration to keep
the system secure [19]. Miners, dedicated peers that maintain the
blockchain ledger, are usually rewarded for their efforts. Specifically,
users pay a small fee for each transaction and miners then these fees
when including their transactions in the blockchain. Other decentral-
ized applications have adopted cryptocurrencies as a payment system
to reward the performed work. Filecoin is a decentralized system where
users pay with a blockchain-based token to have their data stored by
peers [20]. Likewise, TorCoin proposes a mechanism where the relay
and exit nodes “mine” a Bitcoin-derived cryptocurrency by relaying
Internet traffic [21].

Even though trade-based incentives are frequently used to incen-
tivize work, remuneration is not an adequate solution for any de-
centralized applications, for the following three reasons [22]. First,
they require the integration of a secure payment infrastructure which
complicates the system design and potentially enables new forms of
attack, such as coin forgery and double-spending. Using a central
authority to keep track of each peer’s balance introduces a central
component and poses a single-point-of-failure. Second, remuneration
requires peers to determine the price of a digital service, which can
be hard to estimate. Third, remuneration can result in new forms of
unfairness where a few affluent peers exclusively enjoy the services of
a decentralized application. This situation could arise when operating
peer-to-peer auctions for the allocation of services.

2.2. Trust-based incentives

Applications implementing trust-based incentives indirectly reward
community members for their work. For example, the system can
reward dedicated peers with preferential treatment or provide them
access to exclusive services. This approach often requires peers to keep
track of the long-term contributions of other peers using accounting
infrastructure [23]. The specifications of accounted work can then be
used by the application to detect how a particular peer has contributed
to the system. For instance, the accounted work can be used by a
reputation algorithm that outputs a ranking of peers [24]. If the ranking
of a specific peer is below a threshold, the application can decide to
refuse to perform work for this peer until its ranking has improved. We
outline related work that uses work accounting and trust-based incen-
tives. For an overview of (decentralized) reputation mechanisms and
trust models, we refer the interested reader to existing work [25,26].

Perhaps the most popular decentralized application is BitTorrent,
a peer-to-peer file exchange protocol [27]. In BitTorrent, each peer
has a limited number of slots to allocate to other peers. The system
uses tit-for-tat, a cooperation strategy where a counterparty loses its
slot when it stops to reciprocate. This simple strategy leads to higher
network utilization since long-term free-riders will not be allocated
3

slots. BitTorrent does not persist all contributions and consumptions of
other peers, of but tracks the performance of connected peers for each
download.

The InterPlanetary File System (IPFS) is a decentralized system for
file storage and exchange [28]. IPFS breaks up files into blocks, which
are identifiable by a content identifier. The original IPFS whitepaper
describes bitSwap, a set of tools to exchange blocks while addressing
free-riding behaviour through block bartering. It ensures that peers
are incentivized to seed blocks by pair-wise tracking of outstanding
“balances”. Peers that do not sufficiently share blocks will be ignored
by others.

Wallach et al. present different mechanisms for the fair sharing
of resources in decentralized applications [29]. These mechanisms
ensure that each peer maintains a log with actions and includes ran-
dom auditing of logs. The applicability of their work is exclusive to
storage-based application and is not reusable for other decentralized
applications. Osipkov et al. describe an accounting mechanism for file-
sharing applications [30]. Specifically, each peer maintains a set of
witnesses that monitors all transactions of that peer.

LiFTinG and AcTinG are protocols for tracking free-riding behaviour
in gossip-based applications [31,32]. The LiFTinG protocol exploits the
message dynamics between peers and verifies that the content received
by a peer is further propagated according to the protocol. The design
depends on a statistical approach and cross-checking of logs to detect
free-riders but is not reusable for applications beyond gossip. AcTinG is
a gossip-based dissemination protocol that is resistant against colluding
rational peers.

Other approaches maintain a distributed ledger that store infor-
mation in decentralized applications. Seuken and Parkes introduce a
Sybil-resistant accounting mechanism based on transitive trust [33].
PeerReview is an accountability mechanism to record message ex-
change between peers [34]. Peers store all network messages in a local
log. Dedicated witnesses continuously audit peers and detect whether a
peer has deviated from the protocol. The FullReview protocol extends
PeerReview by addressing selfish behaviour with a game-theoretical
model [35]. Otte et al. present TrustChain, a Sybil-resistant reputation
mechanism with an accompanying accounting mechanism [36]. The
authors apply their mechanism to address free-riding behaviour in a
file-sharing network. We find that peers in TrustChain cannot engage
in the recording of multiple interactions simultaneously, significantly
limiting the achievable throughput. Crosby et al. present a data struc-
ture for tamper-evident logging [37]. This data structure orients around
the efficient logging of unilateral system events on a server. Peermint
is an accounting mechanism designed for market-based management of
decentralized applications [38].

2.3. Problem description

There currently is no universal accounting mechanism that can be
used to address fairness issues in decentralized applications, to the
best of our knowledge. We address this shortcoming and describe three
challenges when designing such a mechanism.

Challenge I: Universality. The trust-based solutions that we have
identified so far are designed for usage within a single application
domain and are infeasible to re-use. We believe that universality is an
important property to address fairness concerns in novel decentralized
applications.

Challenge II: Full decentralization without central authority.
To keep our system reusable and universal, we avoid any decision
making by entities with leveraged authorities and central servers. The
lack of a central authority makes our mechanism fully decentralized
and easier to deploy. In general, decentralized mechanisms are less
vulnerable to large-scale attacks, tend to scale better, and are more
resilient to failure. They also are an excellent architectural fit with

existing decentralized applications without central authorities.
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Challenge III: Fraud detection. Peers have a natural incentive
to misrepresent the magnitude of their efforts to inflate their social
standing or to hide information unfavourable to their standing [23].
Our accounting mechanism must address the completeness and cor-
rectness of the stored information. We must detect the manipulation or
hiding of accounted information and punish adversarial peers accord-
ingly. We consider the accounting of events that have not occurred in
the application out of scope.

3. Accounting work with ConTrib

The design of our universal accounting mechanism, named ConTrib,
is inspired by the tamper-evident properties of blockchain but does
not require peers to reach consensus on a coherent history of records.
Instead, ConTrib optimistically detects the illegitimate modification
of records while keeping the computational overhead and bandwidth
requirements low. Decentralized applications can account the work
performed by peers within tamper-evident records. A record describes
some work performed by one peer for another peer. Each peer organizes
their records in a personal ledger. Records point to prior records in
the same personal ledger and also point to records in the personal
ledger of others. The latter pointer captures an agreement between two
peers. Peers continuously exchange records with other random peers
and request records in the personal ledgers of others. By validating
the consistency of incoming records against known ones, a peer can
irrefutably prove fraud attempts to other peers.

We further elaborate on the design of ConTrib. We first outline the
network and threat model. We then describe the ConTrib data structure
and show how ConTrib accounts the work in decentralized applications.

3.1. Network model

The ConTrib mechanism is built on a peer-to-peer network. We
assume an unstructured network structure. Unstructured networks are
relatively straightforward to maintain and are highly resilient against
churn. We assume that the used networking library handles network
bootstrapping and peer discovery. We also assume that the communi-
cation channels between peers are unreliable and unordered (e.g., by
using the UDP communication model). The arrival time of messages is
not upper-bounded, and outbound messages can fail to arrive at their
intended destination. Each peer has a cryptographic key pair, consisting
of a public and private key. The public key acts as a unique identifier of
the peer in the network, whereas the private key is used to sign records
and outgoing network messages. We consider attacks targeted at the
network layer, e.g., the Eclipse Attack, outside the scope of this work.

A significant threat in Internet-deployed applications is the Sybil
Attack, where an adversary operates multiple identities to subvert the
network [39]. The Sybil Attack frequently occurs in open Internet
communities, where the cost of creating a new digital identity is often
negligible. Although the ConTrib mechanism does not include defences
against Sybil identities, we argue that this threat can be mitigated with
well-established techniques that complement ConTrib in a deployment
setting. A basic defence mechanism is to have peers solve a computa-
tional puzzle when they wish to join the network [40]. In addition,
using a Sybil-resistant reputation mechanism that processes ConTrib
records can effectively mitigate the effect of Sybil identities on com-
puted trust scores [41,42]. We also consider self-sovereign identities
as a promising solution that can bolster decentralized networks with
long-term identities [43].

We leave defences against misreporting, the accounting of work that
has not occurred in the application, to other layers in the application
stack. This attack is closely related to the Sybil Attack since Sybil
identities are likely to create fake interactions amongst them [44].
Misreporting is challenging to address in a generic manner since there is
not always a straightforward method to assess if some accounted work
is legitimate. Some protocols use cryptographic techniques to prove the
accuracy of performed work, for example, Proof-of-Storage and Proof-
of-Bandwidth [20,21]. These proofs, however, cannot easily be used
4

across different application domains. c
Fig. 3. The process of recording work between peers 𝑎 and 𝑏 within two records: a
proposal 𝑃 and a confirmation 𝐶.

.2. Threat model

Our threat model orients around malicious peers that attack the
ntegrity of the ConTrib data structure. This attack proceeds through
he strategic modification of ConTrib records. For example, a peer can
nflate the amount of work it has performed by modifying one of the
ecords in its personal ledger. We refer to the illegitimate modification
f ConTrib records as fraud. Even though this definition may seem
imited, we argue that this kind of fraud is a fundamental threat to the
onTrib data structure. In particular, our definition of fraud also entails
more advanced form of record manipulations where peers collude

o erase a particular interaction from history.1 In a reputation system,
or example, this would happen when a well-trusted peer temporarily
oosts the reputation of another peer by accounting some work and
hen attempts to hide the existence of this interaction later. Reverting
his interaction requires both counterparties to either override or re-
ove the associated records, which we consider as fraud. We note that
particular fraud instance in our system involves at most two guilty

eers. As we discussed in Section 2.3, we require that fraud is detected.
e assume that the computing power of adversaries is bounded and

hat cryptographic primitives are secure.

.3. Recording interactions

Some work that involves peers 𝑎 and 𝑏 is recorded using two records:
one proposal created by 𝑎 and one confirmation created by 𝑏. W.l.o.g.,

e assume that the accounted work is performed by peer 𝑎 for peer
. The process of accounting this work is visualized in Fig. 3. First, 𝑎

creates a proposal record, which we refer to as 𝑃 (step 1⃝). Proposal
𝑃 , created by peer 𝑎, is a tuple with the following four attributes:

𝑃 = (𝚙𝚞𝚋𝙺𝚎𝚢, 𝚙𝚞𝚋𝙺𝚎𝚢𝙾𝚝𝚑𝚎𝚛, 𝚙𝚊𝚢𝚕𝚘𝚊𝚍, 𝚜𝚒𝚐)

𝑃 contains the public key of peers 𝑎 and 𝑏 (pubKey and pub-
KeyOther, respectively), an application-specific payload (payload),
and a digital signature (sig) created by 𝑎 of the record in binary form.
The payload attribute is an arbitrary blob of data and is provided by
the connected application. To increase the resilience against manipula-
tion, we extend records with additional fields in the next section. After
peer 𝑎 has included all described attributes in the proposal, it persists
the record to its database, sends the proposal to 𝑏, and disseminated
the proposal to 𝑓 random peers in the network (step 2⃝). We refer to
𝑓 as the fanout value.

1 Peers might refrain from overriding or erasing their records during or
fter a collusion attempt. We do not consider this as fraud since adversaries
o not exploit the ConTrib data structure. Since all records associated with
he collusion attempt are accounted, decentralized applications might employ
dditional logic to analyse created records and attempt to detect possible

ollusion attempts, e.g., with correlation analysis [45].
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When peer 𝑏 receives the proposal 𝑃 , 𝑏 verifies its validity. It is
uring this step that fraud is detected. The validation logic of incoming
ecords is elaborately discussed in Section 4. If the incoming proposal

is deemed valid, the connected application determines if the payload
n 𝑃 truthfully describes the performed work. If 𝑃 considered invalid, 𝑏
gnores the incoming proposal and takes no further action. Otherwise,
creates a confirming record that confirms 𝑃 (step 3⃝). This confirma-

ion, denoted by 𝐶, contains the same attributes as the proposal 𝑃 and
lso includes the hash of 𝑃 . Confirmation 𝐶, created by peer 𝑏 is a tuple
ith the following five attributes:

= (𝚙𝚞𝚋𝙺𝚎𝚢, 𝚙𝚞𝚋𝙺𝚎𝚢𝙾𝚝𝚑𝚎𝚛, 𝚙𝚊𝚢𝚕𝚘𝚊𝚍, 𝚙𝚛𝚘𝚙𝚘𝚜𝚊𝚕𝙷𝚊𝚜𝚑, 𝚜𝚒𝚐)

The value of proposalHash is computed by 𝐻(𝑃 ), where 𝐻(⋅)
s a secure hash function. We call the proposalHash attribute in

the confirmation pointer. After the creation of 𝐶, peer 𝑏 persists the
onfirmation to its database, sends it to 𝑎, and disseminates both 𝑃
nd 𝐶 to 𝑓 random peers (step 4⃝). Upon the reception of 𝐶, peer 𝑎
alidates the 𝐶 and persists the confirmation if it is valid. Both parties
re now in possession of proposal 𝑃 and confirmation 𝐶 that together
rove an agreement on work between these parties. The process of
ccounting work is lightweight since it requires minimal computational
ower and data exchange. Also, peers can engage in the recording of
ultiple interactions simultaneously.

A potential risk is that 𝑏 refuses to confirm 𝑃 , even though the
ncoming proposal is valid and contains the correct work details. This
ould, for example, occur when confirming 𝑃 negatively impacts 𝑏’s

social standing. This leaves 𝑎 with an unconfirmed proposal, which
alone is not sufficient evidence to convince other peers of the performed
work by 𝑎 for 𝑏. When 𝑏 refuses to sign an incoming proposal, 𝑎 will add
𝑏 to the local blacklist managed by applications, refusing to perform
work for 𝑏 until 𝑏 has confirmed 𝑃 . The losses for 𝑎 depend on the
magnitude of the (unconfirmed) work performed for 𝑏. To minimize
these losses, we suggest that decentralized applications record small
units of works using ConTrib. For example, a file-sharing application
can choose to account unconfirmed work when it reaches a threshold,
e.g., 10 MB of traffic exchanged. Depending on the granularity of
accounting, this approach can significantly reduce the impact of peers
refusing to acknowledge the contributions of their counterparties.

3.4. Improving resilience by linking records

To prevent the modification of created records, we enforce each
peer in ConTrib to link their records together in a personal ledger,
incrementally ordered by creation time. Linking records will also make
it harder for malicious peers to hide specific records. We make the
following four modifications to records:

1. First, we include a sequence number 𝑠 ∈ Z in each record that
is incremented by one when a new record is added to one’s
personal ledger. The sequence number of the first record in the
personal ledger is 1.

2. Second, each record now includes the hash of the prior record
in the personal ledger of the creator. This modification makes
the ConTrib data structure comparable to a hash chain, e.g., as
used by blockchain applications. The modification of a particular
record now changes the hash of subsequent records, a feature
that enables us to detect illegitimate changes to stored records
(also see Section 4). The previous hash of the first record in a
personal ledger is empty and referred to as ⊥.

3. Third, we extend the confirmation pointer with the sequence
number of the proposal record that it confirms.

4. Fourth, we include at most 𝑏 additional hashes in each record of
distinct, prior records in the same personal ledger. We indicate
the set with these hashes with 𝑆 and call these hashes back-
pointers. As we will further show in Section 4, the inclusion
5

of these back-pointers significantly speeds up the detection of
fraud. The required back-pointers in some record 𝑅 are deter-
ministically given by a pseudo-random function 𝜎 that takes the
public key of the record creator and the sequence number of 𝑅 as
input. 𝜎 returns a set with at most 𝑏 prior records which hashes
should be included in 𝑅. All peers must use the same version
of 𝜎, which we achieve by bundling its implementation in the
ConTrib software.

The above modifications change the attributes of proposal and
confirmation records. We re-define a proposal 𝑃 , created by peer 𝑎 and
with counterparty 𝑏, as follows:

𝑃 = (𝚙𝚞𝚋𝙺𝚎𝚢, 𝚙𝚞𝚋𝙺𝚎𝚢𝙾𝚝𝚑𝚎𝚛, 𝚙𝚊𝚢𝚕𝚘𝚊𝚍, 𝚜𝚒𝚐, 𝚜𝚎𝚚𝙽𝚞𝚖,

𝚙𝚛𝚎𝚟𝙷𝚊𝚜𝚑, 𝚋𝚊𝚌𝚔𝙿𝚘𝚒𝚗𝚝𝚎𝚛𝚜)

The variables coloured green are new compared to our previous defi-
nition of 𝑃 . seqNum refers to the sequence number of 𝑃 , prevHash
indicates the hash of the previous record, and backPointers is the
set with back-pointers (where |𝑆| ≤ 𝑏). We re-define a confirmation 𝐶,
created by peer 𝑏, as follows:

𝐶 = (𝚙𝚞𝚋𝙺𝚎𝚢, 𝚙𝚞𝚋𝙺𝚎𝚢𝙾𝚝𝚑𝚎𝚛, 𝚙𝚊𝚢𝚕𝚘𝚊𝚍, 𝚕𝚒𝚗𝚔𝙸𝚗𝚏𝚘, 𝚜𝚒𝚐,

𝚜𝚎𝚚𝙽𝚞𝚖, 𝚙𝚛𝚎𝚟𝙷𝚊𝚜𝚑, 𝚋𝚊𝚌𝚔𝙿𝚘𝚒𝚗𝚝𝚎𝚛𝚜)

We extend confirmations with the same attributes as a proposal
but replace the proposalHash attribute with linkInfo. This is in
accordance with our third modification. linkInfo is now defined as
a tuple with the hash and sequence number of the referred proposal
record:

𝐶.𝚕𝚒𝚗𝚔𝙸𝚗𝚏𝚘 = (𝚑𝚊𝚜𝚑, 𝚜𝚎𝚚𝙽𝚞𝚖)

Creating records yields the graph structure, as shown in Fig. 4. Fig. 4
shows a part of the ConTrib graph with six records, created by three
distinct peers (𝑎, 𝑏 and 𝑐). Same-coloured records are part of a single
personal ledger, and arrows represent hash pointers to other records.
Proposals have a solid border whereas confirmations have a dashed
border. Note how the record in 𝑎’s personal ledger with sequence
number 55 is unconfirmed. For presentation clarity, we only show the
pointer to the prior record in one’s personal ledger and omit additional
back-pointers from the figure.

ConTrib publicly accounts work in interlinked personal ledgers.
Since all performed work is publicly stored and accessible, other users
might acquire and analyse ConTrib records to reveal potentially sensi-
tive information, e.g., the time at which a particular user is online or
the interaction patterns between users. To reduce this threat, we outline
two techniques that applications can use to enhance privacy. First,
applications can account performed and consumed work in batches.
For example, an application can record all outstanding contributions
and consumptions every hour, therefore hiding granular work statistics.
Second, an application can add some noise to the amount of work
being accounted (fuzzy accounting). This technique effectively reduces
linkability, e.g., when accounting traffic that is being relayed through
multiple hops. We believe that the combined power of these two
techniques provides sufficient privacy guarantees for most decentral-
ized applications. A more advanced approach, used by the Monero
cryptocurrency, leverages ring signatures and zero-knowledge proofs
to hide the amounts of work performed [46,47]. This approach would,
however, require fundamental changes to ConTrib and we leave this
enhancement for further work.

4. Detecting fraud

We require that ConTrib detects illegitimate tampering of the
records in a personal ledger. ConTrib is built around fraud detection
instead of prevention. We argue this is a reasonable assumption for two
reasons. First, decentralized applications often do not require the pre-

vention of fraud [48]. We argue that fraud prevention is disproportional
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Fig. 4. A part of the ConTrib DAG, involving five peers and six records: four proposals (solid borders) and two confirmations (dashed borders). The proposal created by user 𝑎
with sequence number 55 is unconfirmed. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
in the context of work accounting. Second, preventing fraud is often a
resource-intensive process that requires peers to reach a consensus on
all created records, e.g., by using classical BFT algorithms or Proof-of-
Work [49]. The requirement to reach consensus would severely limit
the scalability of ConTrib.

Fraud in ConTrib occurs when a peer illegitimately modifies one of
the records in their personal ledger. This fraud, for example, happens
when an adversary attempts to hide a specific record in the personal
ledger by replacing it with another one. This action would result in
pairs of records with the same sequence number and the same creator,
but with a different hash. This violates the integrity of the ConTrib
data structure. A key objective of ConTrib is to detect such conflicting
records quickly.

4.1. Detecting forks

Fraud in ConTrib is detected by sharing newly created records with
other peers, and by requesting random records in the personal ledgers
of others. Each peer assesses the consistency of incoming records with
the ones in its local database. This simple approach allows for quick
detection of fraud through the collective effort of peers. In Fig. 5, we
visualize four identified scenarios in which we can either expose an
adversarial peer (scenario I and II) or detect an inconsistency without
assigning blame (scenario III and IV). Each scenario shows the situation
from a single peer’s perspective and highlights records that a peer has
in its local database, or does not have. Records not in the possession
by a peer are faded. Records with the same colour are created by the
same peer. We discuss each scenario and elaborate on how they either
lead to fraud exposure or the detection of an inconsistency.

• Scenario I. The first scenario, visualized in Fig. 5a, describes a
situation where a peer can directly expose a fork in the personal
ledger of peer 𝑎. The personal ledger of peer 𝑎 has been forked
since records 𝑅1 and 𝑅2 have the same sequence number but a
different hash. As soon as another peer, say 𝑏, receives 𝑅1 while
already having 𝑅2, or receives 𝑅2 while already having 𝑅1, the
pair (𝑅1, 𝑅2) is sufficient evidence to expose the fraud by 𝑎. The
digital signature by 𝑎 in the records prove that 𝑎 deliberately
created both records. Note that 𝑏 does not need to have 𝑅3 to
detect nor to prove this fraud. We call the pair (𝑅1, 𝑅2) a fraud
proof. Fraud proofs are by default shared with other peers in the
network through a FraudProof message.

• Scenario II. The second scenario describes the situation where
one can prove fraud by detecting inconsistencies in the included
back-pointers of records. Fig. 5b shows four records created by
peer 𝑎. Records 𝑅3 and 𝑅4 contain the hash of the record with
sequence number 54 in the back-pointer set; however, these back-
pointers describe the same record with a different hash. The pair
(𝑅3, 𝑅4) is irrefutable proof that peer 𝑎 has committed fraud and
can be used to construct a fraud proof.
6

Algorithm 1 The validation of the fields in record 𝑅.
1: procedure validateFields(𝑅) ⊳ Step 1
2: 𝑣𝑎𝑙𝑖𝑑 ← true
3: if 𝑅.𝑠𝑒𝑞𝑁𝑢𝑚 < 1 then
4: 𝑣𝑎𝑙𝑖𝑑 ← false
5: if isConfirmation(𝑅) and 𝑅.𝑙𝑖𝑛𝑘𝐼𝑛𝑓𝑜.𝑠𝑒𝑞𝑁𝑢𝑚 < 1 then
6: 𝑣𝑎𝑙𝑖𝑑 ← false
7: if not publicKeyIsValid(𝑅.𝑝𝑢𝑏𝐾𝑒𝑦) then
8: 𝑣𝑎𝑙𝑖𝑑 ← false
9: if not signatureIsValid(𝑅.𝑝𝑢𝑏𝐾𝑒𝑦, 𝑅.𝑠𝑖𝑔) then

10: 𝑣𝑎𝑙𝑖𝑑 ← false
11: if not publicKeyIsValid(𝑅.𝑝𝑢𝑏𝐾𝑒𝑦𝑂𝑡ℎ𝑒𝑟) then
12: 𝑣𝑎𝑙𝑖𝑑 ← false
13: if 𝑅.𝑠𝑒𝑞𝑁𝑢𝑚 = 1 and 𝑅.𝑝𝑟𝑒𝑣𝐻𝑎𝑠ℎ ≠ ⊥ then
14: 𝑣𝑎𝑙𝑖𝑑 ← false
15: return valid

• Scenario III. Fig. 5c shows a third scenario where a peer receives
proposal 𝑅1 and already has confirmation 𝑅2, or receives confir-
mation 𝑅2 while already having proposal 𝑅1. The peer does not
have records 𝑅3 and 𝑅4. The hash of record 𝑅3 in 𝑅1 differs from
the hash in the confirmation pointer in 𝑅2. This situation reveals
an inconsistency that is either introduced by peer 𝑎 forking its
personal ledger at height 54, or by 𝑏 having included a wrong
hash in 𝑅2. To assign blame, the peer that is validating the
incoming record requires either 𝑅3 or 𝑅4. A peer that encounters
this situation sends the pair (𝑅1, 𝑅2) within a Inconsistency
message to other random peers, hoping that others will be able
to expose the malicious peer.

• Scenario IV. Fig. 5d highlights the fourth scenario where a peer
either receives confirmation 𝑅1 while already having confirma-
tion 𝑅3, or vice versa. Both confirmations point to a record with
the same public key and sequence number, but the hash of this
record differs. This situation either indicates a fork of the personal
ledger of 𝑎, or it can be the result of an invalid pointer in one
of the confirmations. Similar to scenario III, the validating peer
sends the pair (𝑅1, 𝑅3) within a Inconsistency message to
other, random peers.

4.2. Record validation logic

Based on the four identified scenarios, we design and describe the
validation logic of an incoming record 𝑅. Each peer keeps track of
known hashes in a dictionary named knownHashes. This dictionary is
indexed with a tuple, containing the public key and sequence number
of a record. The value of dictionary entries is the hash of the record
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Algorithm 2 The consistency validation of hashes in an incoming
ecord against known ones.
1: procedure validateHashes(R) ⊳ Step 4
2: ℎ𝑎𝑠ℎ ← 𝑘𝑛𝑜𝑤𝑛𝐻𝑎𝑠ℎ𝑒𝑠[(𝑅.𝑝𝑢𝑏𝐾𝑒𝑦,𝑅.𝑠𝑒𝑞𝑁𝑢𝑚 − 1)]
3: if ℎ𝑎𝑠ℎ ≠ ⊥ and ℎ𝑎𝑠ℎ ≠ 𝑅.𝑝𝑟𝑒𝑣𝐻𝑎𝑠ℎ then
4: return false
5:
6: for 𝑠𝑒𝑞𝑁𝑢𝑚, ℎ𝑎𝑠ℎ in 𝑅.𝑏𝑎𝑐𝑘𝑃𝑜𝑖𝑛𝑡𝑒𝑟𝑠 do
7: 𝑘𝑛𝑜𝑤𝑛 ← 𝑘𝑛𝑜𝑤𝑛𝐻𝑎𝑠ℎ𝑒𝑠[(𝑅.𝑝𝑢𝑏𝐾𝑒𝑦, 𝑠𝑒𝑞𝑁𝑢𝑚)]
8: if 𝑘𝑛𝑜𝑤𝑛 ≠ ⊥ and ℎ𝑎𝑠ℎ ≠ 𝑘𝑛𝑜𝑤𝑛 then
9: return false

10: return true

being queried. The validation logic of incoming records consists of the
following five steps:

Step 1. We first verify the validity of the fields in incoming record
𝑅. This step is performed by the validateFields procedure, which returns

boolean value indicating whether the fields in the record are valid or
ot. A pseudocode description of this procedure is given in Algorithm
. This step validates the sequence number (line 3), the included public
eys (line 7 and 11), and the digital signature (line 9). If the incoming
ecord is a confirmation, it also verifies that the sequence number in
he linkInfo attribute is within a valid range (line 5). It also checks
7

i

whether the hash of the prior record is sane when the record is the
first in ones personal ledger (line 13). This step does not compare the
validity of 𝑅 within the context of other records. Any error in the
included fields of 𝑅 is computationally efficient to detect and likely
originates from a software bug.

Step 2. Next, we query the database for a record with the same
public key and sequence number as the incoming record 𝑅. If such a
record 𝑅′ is in the database, we check the equality of 𝑅 and 𝑅′ by
performing a comparison between their included fields. If 𝑅 ≠ 𝑅′,
we have detected a fork in the personal ledger of the creator behind
𝑅. We then share the fraud proof (𝑅,𝑅′) with other peers in the
network. During this step, we detect the fraud described by scenario
I in Section 4.1.

Step 3. Then, we verify if the hash pointers in the incoming record
are consistent with known ones. This is performed by the validateHashes
procedure which pseudocode description is given in Algorithm 2. This
procedure first checks whether the prevHash attribute in 𝑅 is consis-
ent with the information in the knownHashes dictionary (line 3). We
hen iterate over all included back-pointers and verify the consistency
f these hashes with the entries in the knownHashes dictionary (line
–10). We can detect the inconsistency described by scenario II during
his step.
Step 4. Next, we compare incoming record 𝑅 with a link record,

f such a record is available in the database. When 𝑅 is a proposal,
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Algorithm 3 The validation of an incoming record against a linked
record.
1: procedure validateLink(R) ⊳ Step 3
2: 𝑙𝑖𝑛𝑘𝑒𝑑 ← 𝑑𝑏.getLinked(R)
3: if 𝑙𝑖𝑛𝑘𝑒𝑑 = ⊥ then
4: return true
5:
6: 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 ← 𝑙𝑖𝑛𝑘𝑒𝑑 if isConfirmation(R) else 𝑅
7: 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛 ← 𝑙𝑖𝑛𝑘𝑒𝑑 if isConfirmation(𝑙𝑖𝑛𝑘𝑒𝑑) else 𝑅
8:
9: if 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛.𝑝𝑢𝑏𝐾𝑒𝑦𝑂𝑡ℎ𝑒𝑟 ≠ 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙.𝑝𝑢𝑏𝐾𝑒𝑦 then

10: return false
11: if 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛.𝑙𝑖𝑛𝑘𝐼𝑛𝑓𝑜.𝑠𝑒𝑞𝑁𝑢𝑚 ≠ 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙.𝑠𝑒𝑞𝑁𝑢𝑚 then
12: return false
13: if 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛.𝑙𝑖𝑛𝑘𝐼𝑛𝑓𝑜.ℎ𝑎𝑠ℎ ≠ 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙.ℎ𝑎𝑠ℎ then
14: return false
15: 𝑙𝑖𝑛𝑘𝐿𝑖𝑛𝑘𝑒𝑑 ← db.getLinked(𝑙𝑖𝑛𝑘𝑒𝑑)
16: if 𝑙𝑖𝑛𝑘𝐿𝑖𝑛𝑘𝑒𝑑 ≠ ⊥ or 𝑙𝑖𝑛𝑘_𝑙𝑖𝑛𝑘𝑒𝑑 ≠ 𝑅 then
17: return false
18: return true

we get the corresponding confirmation from the database, and if 𝑅 is a
confirmation, we get the corresponding proposal. This step is performed
by the validateLink procedure which pseudocode description is given in
Algorithm 3. We first get the linked record from the database (line 2)
and only continue with this validation step if we have this record in the
database. We check whether the public keys included in the proposal
and confirmation are consistent (line 9), and verify the consistency of
the linkInfo attributes in the confirmation (line 11–14). We detect
the inconsistency described by scenario III during this step (line 15–17).

Step 5. Finally, we verify the validity of the included payload,
which is an application-dependent validation procedure. As we will
further outline in Section 5, decentralized applications using ConTrib
should implement a validation policy that denotes whether the pay-
oad of an incoming record is valid in the context of the connected
pplication.

If any of the above steps fail, the record is considered invalid.

.3. Exchanging records with other peers

The detection of fraud in ConTrib depends on peers exchanging
ecords with each other. A peer is motivated to share collected records
ith others since they might eventually reveal fraud conducted by
ne of their former counterparties. So far, we have not discussed how
ecords are disseminated. Record dissemination is an essential process
hat affects the speed at which fraud can be detected. For example, a
low record exchange strategy is likely to increase fraud detection times
ompared to more aggressive record dissemination. We consider both
ush-based and pull-based exchange of records, which is explained next.
Pull-based record exchange. Each peer by default requests (pulls)

records from other random peers at a fixed rate by sending out Re-
quest messages. Applications can choose to send out Request mes-
sages to specific peers to build profile information about that peer,
e.g., to detect free-riders. A Request message contains a list of se-
quence numbers that the recipient should send back. When receiving
a Request message, the recipient also includes linked proposal or
confirmation records in the response. When a peer 𝑎 does not respond
with records within a reasonable time, the requesting peer adds 𝑎 to
the local blacklist.

Push-based record exchange. ConTrib also supports push-based
record exchange, where the creator of a record disseminates it to 𝑓
random other peers (as also discussed in Section 3.3). This push-based
exchange allows for quick detection of fraud since the probability of no
user receiving two conflicting records goes to zero quickly, even when
8

the network size increases [50]. Even if the malicious peer refrains from
broadcasting a conflicting record, the counterparty is very likely to do
so, assuming there is no collusion between interacting peers. Immediate
dissemination of created records in the network also increases record
availability when the sending peer goes offline.

4.4. Limitations

Even though our simple algorithm can detect the modification of
records, the probabilistic nature of our algorithm can render ConTrib
unsuitable for deployment in specific application domains. Since fraud
detection is a probabilistic approach, some fraud instances can take rel-
atively long to be uncovered (e.g., several minutes). We also observed
this during our experiments (see Section 6). At the same time, we argue
that this is not an insurmountable problem in decentralized applications
where performed work holds no or low monetary value.

Since our algorithm is based on fraud detection, ConTrib is not
uitable for applications that require a high level of security, as is
he case with decentralized financial applications. We believe that
lockchain technology provides more appropriate security guarantees
or such application domains, at the cost of increased resource usage
nd lower scalability.

Finally, we note that ConTrib is mainly built for the lightweight
ccounting of work in decentralized applications. In its current state,
onTrib cannot capture more complicated operations, e.g., executing
rbitrary logic like smart contracts. However, as demonstrated by
ecent research advancements, a lightweight accounting mechanism
an be an enabling component to devise novel types of decentralized
pplications with dynamic risk guarantees [51–53].

. System architecture

We devise a system architecture of our ConTrib mechanism, see
ig. 6. The network layer is the lowest layer in our architecture and
rovides the primitives for decentralized communication and peer dis-
overy. This layer can be realized using existing frameworks to build
eer-to-peer overlay networks, for example, libp2p.2
Record manager. The record manager interacts with the network

ayer to disseminate records and processes incoming ones. It queues
ncoming records for validation and persists incoming fraud proofs to
he database and connected application. It also manages the confirma-
ion of incoming and valid proposals targeted at that peer. Applications
sing ConTrib should provide a confirmation policy that predicates
hether an incoming proposal should be confirmed.
Validator. The validator determines the validity of incoming

ecords according to the algorithms described in Section 4.2. Connec-
ion applications can provide a custom validation policy. If provided, this
alidation policy is invoked during step 5, when the application-specific
ayload in a record is validated. The flexibility to provide custom val-
dation and confirmation policies for incoming records makes ConTrib
niversal and reusable across different application domains.
Persistence. Records and fraud proofs are persisted in a database.

he ConTrib system architecture provides an interface for the queries
ade to the database and supports different database architectures,

.g., structured or unstructured models. Our system architecture in-
ludes a record cache, which is an intermediary component that stores
ll records in the personal ledger of the operating peer in memory. This
ache allows ConTrib to quickly respond to incoming record queries in
he personal ledger of the operating peer. This cache forwards queries
o the database for the retrieval and storage of records and fraud proofs.

To contain the growth of the database and to keep the storage
verhead manageable, an application can choose to periodically prune
he ConTrib database when a storage threshold is reached. In our

2 See https://libp2p.io.

https://libp2p.io
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Fig. 6. The system architecture of ConTrib.
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Table 1
The default parameters used during our evaluation.

Parameter Default value

Peers (𝑛) 1000
Workload 1 proposal per second per peer
Record exchange strategy PULL+RAND+PUSH
Record fanout (𝑓 ) 5
Record request batch size 2
Record request interval 0.5 s
Packet loss rate 0%
Individual forking probability 10%
Back-pointers (𝑏) 10

implementation, by default, we start pruning when at least one million
records have been stored. Applications may increase or decrease this
number, depending on the storage capacities of participating peers
and the deployment environment. The default pruning strategy of
ConTrib continuously removes the record with the lowest database
insertion timestamps until the database size has reached its storage
threshold again. The pruning of older records might cause some forks
to go undetected since records are removed before a fraud proof can
be constructed. As we will show in Section 6.2, most forks in Con-
Trib are quickly detected, and there should be ample time to detect
inconsistencies before relevant records are pruned.

Fraud management. When the validation algorithm exposes fraud,
or when ConTrib receives an incoming fraud proof, the connected
applications are notified of the fraud and can punish the misbehaving
peer accordingly. For example, a fraud policy in a bandwidth sharing
application could decide to not serve the fraudster for some time. The
decentralized application store the digital identities of fraudsters in a
local blacklist.

Interactions between ConTrib and applications. Decentralized
applications interact with ConTrib through an API. This API allows con-
nected applications to query the content of the database. Furthermore,
connected applications can subscribe to incoming records. The record
manager forwards new records to the API, which passes these records
to subscribed applications.

6. Implementation and evaluation

Within this section we systematically explore how ConTrib behaves
when modifying system parameters. We implement ConTrib in the
9

Python 3 programming language. We leverage the network library
implemented by our group, and use the UDP protocol for network com-
munication.3 Our implementation uses the asyncio framework for
asynchronous event handling. The implementation features both an in-
memory storage for experimentation and a persistent (sqlite) database
which can be used to persist records over different sessions. The full
implementation of ConTrib, including unit tests and documentation, is
published on GitHub.4

6.1. Experiment setup

We evaluate the impact of different parameters on the efficiency of
fraud detection. We do so by measuring the time between committing
the fraud and its initial detection. We substitute our networking layer
with the SimPy discrete event simulator [54]. Each peer in the Con-
Trib network knows the network address of 100 random other peers,
resulting in an unstructured overlay topology. Table 1 lists the default
parameters during our experiments. To encourage reproducibility, we
have open-sourced the ConTrib simulator and all experiment scripts.5

Workload and attack model. During our experiments, peers create
records with other random peers. Our default workload has each peer
initiate one proposal per second with another random peer. Note that
the rate at which new records are created grows with the network
size, which should capture the dynamics of real-world applications
(when there are more peers, there is usually more work performed
in the application). We use a uniform transaction load to analyse the
characteristics of ConTrib under a predictable load. Even though this
transaction load is predictable, it resembles an application where work
is periodically accounted. We experiment with network sizes ranging
from 1000 to 10’000 online peers. Though some deployed networks
have many more peers (e.g., BitTorrent and Tor), our experimental
results suggest that ConTrib has no issues scaling beyond 10’000 peers.
In Section 6.6, we subject ConTrib to a realistic workload, extracted
from the interactions in a decentralized file-sharing application.

Each peer forks its personal ledger with a probability of 10% by
removing the last record in its personal ledger and re-using its sequence
number to create a new record. Each peer commits this fraud once. A
peer committing fraud will not broadcast the duplicate record when
push-based record exchange is enabled. In each experiment run, all
peers start with an empty personal ledger, and interaction partners

3 See https://github.com/tribler/py-ipv8.
4 See https://github.com/tribler/py-ipv8/tree/master/ipv8/attestation/

rustchain.
5 See https://github.com/tribler/trustchain-simulator-pysim.

https://github.com/tribler/py-ipv8
https://github.com/tribler/py-ipv8/tree/master/ipv8/attestation/trustchain
https://github.com/tribler/py-ipv8/tree/master/ipv8/attestation/trustchain
https://github.com/tribler/trustchain-simulator-pysim
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always confirm incoming proposals. A peer that has exposed the fraud
of another peer will refuse to confirm the proposals by that peer. Each
experiment run terminates either when all fraud attempts have been
discovered or after ten minutes have elapsed. We are interested in the
detection time of fraud instances, which is the time period between
committing the fraud and its first detection by a peer in the network.

Record exchange strategies.We consider the following four strate-
gies for exchanging records. With the PULL strategy, each peer requests
two contiguous records at a random height in the personal ledger of an-
other random peer every half a second (the record request batch size and
record request interval parameters in Table 1). Under the PULL+RAND
strategy, a peer also returns five random records in their database upon
a query. Including random records in responses enables the detection
of fraud of offline peers. The PULL+PUSH strategy also pushes new
records to 𝑓 random users upon creation, compared to the PULL
strategy. Finally, we consider the PULL+RAND+PUSH record exchange
strategy, which is a combination of the above techniques.

6.2. Scalability

Our first experiment quantifies the scalability of ConTrib when
increasing the number of peers in the network, see Fig. 7. Fig. 7a shows
the effect of increasing the number of peers on the average time until
fraud detection, for the four discussed record exchange strategies. For
all record exchange strategies, the average fraud detection time seems
to increase when the network size grows. For 𝑛 = 10’000, the PULL
strategy shows an average fraud detection time of 63.5 s, whereas this
number decreases to 3.6 s under the PULL+RAND+PUSH strategy. We
notice that the PULL+PUSH and PULL+RAND+PUSH strategies show
detection times under five seconds on average. These low detection
times demonstrates that disseminating a record just after its creation
is a highly successful strategy. Including random records in crawl
responses also seems to decrease the average fraud detection times. For
𝑛 = 10’000, the average fraud detection time decreases from 63.5 s for
the PULL strategy to 27.8 s for the PULL+PUSH strategy.

In Fig. 7b, we show the Empirical Cumulative Distribution Function
(ECDF) of fraud detection times for 𝑛 = 5000. We observe that it can
take several minutes for some fraud attempts to be discovered, in par-
ticular for the PULL and PULL+RAND strategies. This is not unexpected
since fraud detection in ConTrib is a highly probabilistic approach. For
the PULL strategy, we can detect 90% of fraud attempts within 160 s
nd 50% of the fraud attempts within 30 s. We also observe that the
ast majority of fraud is detected within a few seconds when pushing
andom records after creation. 82.9% of all fraud attempts are detected
ithin five seconds for the PULL+RAND+PUSH strategy.

Fig. 7c shows the average network usage per-peer as the network
size increases, for different record exchange strategies. The PULL strat-
egy requires less than 10 KB per second of network usage. Compared to
the PULL strategy, the PULL+RAND+PUSH strategy requires more than
three times as much bandwidth, around 35 KB per second. Note how
the network usage remains roughly the same for all considered record
exchange strategies as we add more peers to the experiment. Fig. 7c
also shows that it is feasible to deploy ConTrib in consumer-grade
network environments. System designers can decrease the network
usage of ConTrib even more by lowering the crawl interval or crawl
batch size, at the cost of increased fraud detection times.

Not all fraud has been detected after our experiment has ended.
Fig. 7d shows the percentage of fraud attempts that has been detected
after the experiment has ended, for an increasing number of peers and
different record exchange strategies. It becomes less likely that fraud
is detected during our experiment when increasing the network size
under the PULL strategy. For 𝑛 = 10’000, 7.28% of fraud attempts
remain undetected. These attempts would likely be discovered when
prolonging the experiment duration.
10
6.3. Packet loss

We reveal the robustness of ConTrib by quantifying the effect of
packet loss on the efficiency of fraud detection. To this end, we increase
the packet loss rate, up to 20%, and run our simulations under our four
record exchange strategies. Even though a packet loss rate of 20% is un-
likely for any environment in which ConTrib is to be deployed, we want
to estimate how robust ConTrib is, even in such extreme circumstances.
We expect fraud detection times to increase when network stability is
lower since losing packets makes it less likely to detect inconsistencies.

Fig. 8 shows the average fraud detection times when increasing the
packet loss rate for our four record exchange strategies. We observe that
fraud detection times increase under the PULL and PULL+RAND strate-
gies, whereas this effect is less for the PULL+PUSH and PULL+RAND+
PUSH strategies. Average fraud detection times, under the PULL strat-
egy, increase from 44.6 s with no packet loss to 94.1 s with 20%
packet loss. For the PULL+RAND+PUSH strategy, this same increase is
from 2.3 s to 6.0 s. We notice that with a packet loss of 20% and the
PULL strategy, 23.8% of all fraud attempts remains uncovered after
the experiment has ended. This number is just 0.2% when no packets
are lost. Under the PULL+RAND+PUSH strategy, we see that all fraud
attempts are discovered in our experiment, for all evaluated packet loss
rates.

6.4. Request interval and batch size

We modify the record request interval and batch size and analyse
the effect on the average fraud detection times, see Fig. 9. Fig. 9a
visualizes the impact of the record request interval on the average fraud
detection times for different record exchange strategies. We increase
the record request interval, ranging from 0.5 s to 5 s, in steps of
0.5 s. First, we observe that the average fraud detection times for
the PULL+PUSH and PULL+RAND+PUSH strategies remains roughly
constant. This trend indicates that pushing records to random peers is
the dominant logic of the record exchange strategy, very effectively
exposing fraud instances. We also note that average fraud detection
times for the PULL and PULL+RAND strategies are increasing when
the record request interval becomes larger. For the PULL strategy,
we notice that when the request interval is over 3 s, most fraud
instances remain undetected after our experiment finishes. These fraud
instances become increasingly harder to detect as the modified record
in a personal ledger gets “buried” under additional records. As such,
the average fraud detection time is likely higher when running the
experiment until all fraud instances have been detected. Unfortunately,
we are unable to significantly prolong the experiment duration as
our simulations are already using peak memory usage, despite various
optimization efforts.

Fig. 9b shows the average fraud detection times when increas-
ing the number of records queried in each request from 1 to 10,
for different record exchange strategies. Again, the PULL+PUSH and
PULL+RAND+PUSH strategies are indifferent to this increase. The av-
erage fraud detection time for the PULL strategy decreases from 60.4 s
to 12.4 s when increasing the request batch size from 1 record to 10
records, respectively. This decrease indicates that increasing the request
batch size is particularly effective when using the PULL strategy, at the
expanse of increased bandwidth usage.

6.5. Back-pointers

We vary the number of back-pointers (𝑏) in each record and analyse
the effect on average fraud detection times. We suspect that adding
more back-pointers increases the probability of detecting fraud since
individual records now bear more hashes of records in ones personal
ledger. This advantage comes, however, at a cost of additional network
usage and computational overhead to analyse the back-pointers. Each
back-pointer adds 32 bytes to the serialized record size.
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Fig. 7. The results of our scalability experiments, with up to 10’000 peers. We evaluate four record exchange strategies.
Fig. 8. The effect of packet loss on the average fraud detection times, for different record exchange strategies.
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Fig. 10 shows the average time until fraud is detected while vary-
ng the number of back-pointers and considering different record ex-
hange strategies. Adding additional back-pointers indeed decreases
raud detection times. Under the PULL record exchange strategy, it
akes 111.2 s to detect fraud when no additional back-pointers are
ncluded. In comparison, this number decreases to 41.6 s when adding
p to ten back-pointers to each record (a decrease of 58.4%). This
ecrease is much more for the PULL+PUSH strategy, namely 97%. Note
hat the effect of adding more back-pointers diminishes for 𝑏 > 4. This
ffect can likely be attributed to the fact that all peers start with an
mpty personal ledger in our simulations, and that different records
ith lower sequence numbers in the same personal ledger are more
11

b

ikely to include identical hashes in their back-pointers. However, we
elieve that the effect of additional back-pointers becomes more appar-
nt when personal ledgers grow to considerable sizes, since different
ecords are then more likely to include more unique hashes.

.6. Fraud detection times under a realistic workload

Our experiments conducted so far are using a synthetic workload.
e now evaluate the effectiveness of fraud detection in ConTrib of our

our considered record exchange strategies using a realistic workload.
his workload is derived from deployment data of ConTrib in Tri-

ler, our decentralized file-sharing application. An interaction describes
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Fig. 9. The effect of changing the request interval batch size on the average fraud detection times.
Fig. 10. The effect of adding more back-pointers to each record on the average fraud detection times, for different record exchange strategies.
Fig. 11. Fraud detection times lower than 180 s for different record exchange strategies when replaying a day of interactions made by Tribler users.
etwork communication between two peers in a Tor-like overlay. We
rovide further details on this dataset in Section 7. The following
xperiment replays interactions made during the busiest 24 h of our
eployment period: November 28, 2020. On this particular day, a
otal of 440’130 records have been created, involving 2027 digital
dentities. In the following experiment, we simulate a peer for each
igital identity. In line with our prior experiments, each peer commits
12

raud with a probability of 10% when creating a new record. To match
the ConTrib settings in our deployed environment (see Section 7), we
increase the record request interval to 10 s.

We noticed that all fraud instances have been detected after our
experiment ends. The average fraud detection time for the PULL strat-
egy is just 29.4 s whereas this number decreases to 18.5 s for the
PULL+RAND+PUSH strategy. 2.5% of all fraud instances take longer
than three minutes to detect, with the highest detection time being
1276 s (just over 21 min). Fig. 11 shows the Empirical Cumulative

Distribution Function (ECDF) of fraud detection times, for the evaluated
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strategies. For presentation clarity, we only show the detection times
of fraud instances lower than three minutes. We observe that over
25% of all fraud for the PULL+PUSH strategy is detected immediately.
During this experiment, we also see that the network usage per peer is
relatively low. For the PULL strategy, each peer, on average, consumes
merely 1.7 MB of hourly network traffic. This number increases to 5.1
MB under the PULL+RAND+PUSH strategy.

This experiment shows that ConTrib, under a realistic workload of
ribler interactions, exhibit relatively low fraud detection times and has

ow network usage. As we have also measured during our deployment
rial (see Section 7), the resource overhead of ConTrib is minimal. For
ribler, the fraud detection times shown in Fig. 11 are acceptable.
owever, as we have also shown in our other experiments, these
etection times can further be improved with more frequent record
rawling.

.7. Discussion

In summary, our experiments demonstrate that ConTrib exhibits low
raud detection times, scales when the network grows, has reasonable
andwidth overhead, and is robust against packet loss. We have also
emonstrated the effect of the number of back-pointers in each record
n the efficiency of fraud detection. Finally, we have shown that
onTrib remains effective at detecting fraud when using a realistic
orkload. Even though we have not evaluated the effect of all parame-

ers in Table 1, we believe that this set of experiments provides a good
tarting point for system designers to adopt and configure ConTrib.
ith our open-source simulator, system designers can quickly analyse

he effect of different parameters, guided by a synthetic or realistic
orkload that resembles the behaviour in their application.

We have demonstrated that there is a trade-off between the average
raud detection times and network usage. The acceptable network usage
iffers per applications. For example, bandwidth is less likely to be a
ottleneck when considering a video streaming application compared
o an Internet-of-Things environment with low-resource devices. By
educing the record request intervals, fanout value, and the maximum
umber of back-pointers, one can reduce the bandwidth footprint of
onTrib, at the cost of increased fraud detection times. Fig. 7c shows
hat the active record exchange strategy has a notable impact on
etwork usage. In a dynamic network where the sessions of peers are
hort-lived, we recommend the PULL+RAND or PULL+RAND+PUSH
trategies, where peers share random records in their database with
thers. This strategy allows the detection of fraud attempts of offline
eers. We recommend the PULL+RAND+PUSH strategy when fraud
ust be detected quickly. We recommend the PULL strategy when

andwidth is a limiting factor.

. Applying ConTrib to address free-riding at scale

To show the effectiveness of ConTrib with a real-world application,
e conduct a large-scale deployment trial of ConTrib with Tribler.
ribler is our decentralized file-sharing application and is downloaded
y over 1.8 million users [14]. This application features an onion-
outing overlay that tunnels BitTorrent traffic through relay and exit
odes to provide anonymity. Unfortunately, the Tribler network suffers
rom an undersupply of exit nodes, leading to frequent network con-
estions and overall degradation of download speeds for all users. We
mploy ConTrib to account the performed work by relay and exit nodes,
nd the consumed work by downloaders. We then punish free-riding
ehaviour by offering users with higher net contributions preferential
reatment during periods of congestion. In the remainder of this section,
e elaborate on the integration of ConTrib in Tribler, on the collected
13

ata, and on the effectiveness of free-riding detection. t
.1. Accounting bandwidth transfers

We enable peers to earn bandwidth tokens by providing services as a
elay or exit node in the Tribler network. The mutations in bandwidth
oken balances of each peer is accounted in ConTrib records. For
xample, a payout corresponding to a data exchange of a 50 MB file
etween peers 𝑎 and 𝑏 deduces 50 MB of 𝑎’s balance and increments
’s balance by 50 MB (MB is the unit of this bandwidth token). Peers
an have a negative balance of bandwidth tokens, in which case they
ave received more traffic than they contributed to the network.

When a peer downloads content using Tribler, the Tribler software
stablishes a circuit, containing exactly one exit node and optionally
ome relay nodes. This is comparable to circuits in the Tor protocol. All
raffic is securely routed through relay and exit nodes. Fig. 12 shows
ow bandwidth tokens are paid out after a peer has downloaded a
0 MB file over a three-hop circuit (with two relay nodes and one
xit node). The downloader accounts a transfer of 250 MB to the first
elay using ConTrib. Specifically, the downloader creates a proposal
ecord, containing the pair-wise byte counter with the first relay and
he magnitude of the current payout. In the latest version of Tribler,
ewly created records are by default disseminated to 20 random peers.
ach peer also requests a random record from another known peer
very 10 s. During our deployment period, we have periodically revised
he record exchange strategy in response to the network behaviour and
rowth.

After the downloader has finished the payout to the first relay, the
irst relay then transfers 150 MB to the next relay, resulting in a net
ositive token balance of 100 MB for the first relay. The rationale
ehind our payout scheme is that we reward relay and exit nodes for
erforming the cryptographic operations on the forwarded data. Relays
hat do not forward the payout to the next hop will be added to the local
lacklist by the previous hop, therefore lowering their opportunity to
arn bandwidth tokens.

Since this use-case involves anonymous downloading, there is an
mportant trade-off between accountability and anonymity. We plan to
ddress privacy concerns around the accounting of bandwidth trans-
ers by having each peer aggregate and delay payouts. This privacy-
nhancing technique is introduced in the work of Palmieri et al. [55].
till, work accounting with ConTrib does not leak the identity of
downloader to other peers in the network, nor reveals any data

eing transferred over circuits. To address the uncontrolled minting
f bandwidth tokens by accounting fake work, we are currently look-
ng into the design and deployment of a Sybil-resistant reputation
echanism [36].

.2. Circuit assignment

We use the bandwidth token balances included in ConTrib records
o grant preferential treatment to dedicated peers during periods of
ongestion. Specifically, we modify the Tribler protocol such that each
elay and exit nodes maintain a fixed number of slots. A circuit that
ncludes a relay or exit nodes consumes one slot at their side. We dis-
inguish between random and competitive slots. Random slots are filled
n a first-come-first-serve basis whereas the assignment of competitive
lot is based on the bandwidth token balance of a circuit initiator. The
ntuition behind this approach is to still give peers with lower trust
cores an opportunity to earn a (random) slot but at the same time,
ive preferential treatment to well-behaving peers with competitive
lots. The total number of such slots can be changed, depending on the
ardware capabilities of the node operator.

A pseudocode description of the slot assignment logic is given in
lgorithm 4. When a circuit initiation request arrives, the onCir-
uitRequest method is invoked and Tribler first determines if there

s a random slot available (line 5–9). If so, we assign the new circuit to
he random slot (line 7). If no random slot is available, Tribler queries

he bandwidth token balance of the circuit initiator 𝑖 by requesting
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Fig. 12. Accounting specifications of an anonymous 50 MB BitTorrent download over a three-hop onion-routing circuit.
T

Algorithm 4 The assignment logic of slots to circuits. numRand and
umComp represent the maximum number of random and competitive
lots, respectively.
1: randomSlots ← [⊥] ∗ numRand
2: competitiveSlots ← [(−∞, ⊥)] ∗ numComp
3:
4: function onCircuitRequest(circuit)
5: for 𝑖 = 0 to numRand do
6: if randomSlots[𝑖] = ⊥ then
7: randomSlots[𝑖] ← circuit
8: return
9: Query the balance of the initiator of the circuit

10:
11: function onBalance(circuit, balance)
12: lowestBalance ← ∞
13: lowestIndex ← ∞
14: for 𝑖 = 0 to numComp do
15: if competitiveSlots[𝑖] = (−∞, ⊥) then
16: competitiveSlots[𝑖] ← (circuit, balance)
17: return
18: if competitiveSlots[𝑖][0] < lowestBalance then
19: lowestBalance ← competitiveSlots[𝑖][0]
20: lowestIndex ← 𝑖
21: if balance > lowestBalance then
22: destroyCircuit(competitiveSlots[lowestIndex][1])
23: competitiveSlots[lowestIndex] ← (circuit, balance)

the records in the personal ledger of 𝑖. When receiving these records,
Tribler determines the current bandwidth token balance and checks
eligibility for a competitive slot (line 12–23). If there is an unoccupied
competitive slot, Tribler assigns the new circuit to it (line 16). If
all competitive slots are filled, the circuit of the initiator with the
lowest amount of bandwidth tokens, say 𝑝, is destroyed if the token
balance of 𝑖 is higher than the token balance of 𝑝 (line 22). This pre-
emptive approach frees up the competitive slot for the circuit of 𝑖. As a
result, users with a higher token balance have more chance to claim a
competitive slot during periods of congestion, compared to free-riders,
and experience higher and more stable download speeds. We consider
the analysis of different allocation policies, e.g., using a packet-granular
scheduler [56], as further work.

7.3. Data collection

We integrate both ConTrib and the slot assignment logic in Tribler
and release a new version of our software. We also deploy a crawler that
continuously requests ConTrib records from random peers in the Tribler
network. This crawler selects a random peer in the ConTrib network
every two seconds and requests missing records in their personal ledger.
The crawler statistics are published on a public website.6 A deployment
period of two years has resulted in more than 160 million records,

6 See http://explorer.tribler.org.
14
created by over 94’000 peers. The crawler stores collected records in
a sqlite database that is enhanced with additional indices to speed up
insertion and analysis queries. The file size of the database with all
collected records is around 120 GB, and we plan on releasing the full
data set later. Our crawler discovered 127’135 proofs of fraud. We also
find that 11.4% of all collected proposals in the deployed ConTrib net-
work is unconfirmed. This fraction of unconfirmed proposals is either
because the proposal counterparty has not created a confirmation, or
because our crawler has not picked up the confirmation record.

Deploying a crawler and monitoring the records created by ConTrib
allows us to detect anomalies caused by software bugs or unexpected
user behaviour. It also provides us with the means to monitor the
growth of users within Tribler by tracking the number of unique peers
in the ConTrib network. We have also included a creation timestamp in
the payload of each record created with Tribler, allowing us to perform
a time-based analysis.

Fig. 13 shows the daily number of created proposal records. We
annotate the dates on which we released a major version of Tribler.
Fig. 13 reveals that more users run Tribler during the weekend and
create more proposals on a Saturday and a Sunday. We also observed
two large-scale outage of exit nodes, in April 2019 and May 2020, likely
due to infrastructure failures. Despite these outages, users would still
perform payouts when downloading directly from other Tribler users
without anonymity.

7.4. Free-rider identification and service refusal

To show the effect of ConTrib and our slot assignment mechanism
on free riders, we deploy 48 exit nodes in the Tribler network, running
on the same machine. Each exit node is configured with a total of 10
random slots and 20 competitive slots, resulting in a total of 1440 slots.
We determined this number of random and competitive slots based on
the hardware capacity of our machine. We are specifically interested
in the situation when a peer is unable to claim a slot, due to their
bandwidth token balance being insufficient. We refer to this situation
as a reject event. For each reject event, we log the bandwidth token
balance of the rejected peer. In total, we logged over 1.4 million reject
events over three weeks.

Fig. 14 shows an Empirical Cumulative Distribution Function
(ECDF) with the bandwidth token balances of all peers (dotted green
line) and the balances associated with rejected circuit requests (solid
red line). For presentation clarity, we filter out all peers and reject
events with balances higher than 50 GB or lower than −500 GB. Many
Tribler users have a negative bandwidth token balance. The median
token balance of all users is −713 MB. This number suggests that there
is not much opportunity to earn bandwidth tokens by contributing
to the network. By default, the Tribler software downloads content
over a 1-hop circuit, only involving an exit node. Changing the default
behaviour to use 2-hop downloads could alleviate this issue, at the
cost of decreased download speeds. Fig. 14 also shows that users
with a relatively low (e.g., < 50 GB) are frequently rejected a slot.

he median token balance associated with reject events is −181.4
GB, demonstrating that our mechanism effectively targets peers with
lower bandwidth token balances. The slots claimed by free-riders will
likely go to dedicated peers when the network is congested. This

deployment trial shows that ConTrib is effective at detecting and

http://explorer.tribler.org
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Fig. 13. Daily creation statistics of proposals, during our two-year deployment trial. We show the amount of confirmed and unconfirmed proposals. We annotate the major releases
f Tribler.
Fig. 14. Empirical Cumulative Distribution Function (ECDF) of the bandwidth token balances of peers and individual rejects events at exit nodes.
ddressing free-riding behaviour in Tribler. The integration of ConTrib
as increases network performance and helps to maintain fairness
mongst downloading users.

. Conclusion

We have presented ConTrib, a universal accounting mechanism to
aintain fairness in decentralized applications by accounting work. The
onTrib data structure uses records to capture the work performed
y peers. Each peer maintains a tamper-evident personal ledger with
nterlinked records. Fraud, the illegitimate modification of a record in
nes personal ledger, is optimistically detected through the random
xchange of records and thorough validation of incoming ones. We
ave devised a system architecture of ConTrib and implemented it.
ur evaluation has demonstrated that ConTrib is capable of detecting

raud within seconds, even when the network grows to 10’000 peers
nd when scaling the system load. Through a two-year deployment
rial of ConTrib in Tribler, involving more than 94’000 users, we have
uccessfully addressed free-riding behaviour.

We envision and encourage the usage of ConTrib beyond work
ccounting in decentralized applications. Currently, ConTrib is being
valuated in different scenarios that require accountability, including
ecentralized trading, software developer portfolios, and self-sovereign
dentity [43,51,52].
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